技術(shù)文章
Biomomentum多軸機(jī)械測(cè)試儀應(yīng)用:聚合物凝膠的多峰表征
閱讀:409 發(fā)布時(shí)間:2021-3-18Biomomentum多軸機(jī)械測(cè)試儀Mach-1應(yīng)用:聚合物凝膠的多峰表征,以確定測(cè)試方法對(duì)觀察到的彈性模量的影響
David M.Kingsley,Caitlin H.McCleery,Christopher DLJohnson,Michael TKBramson,Deniz Rende,Ryan J.Gilbert,David T.Corr
《生物醫(yī)學(xué)材料力學(xué)行為雜志》,于2019年1月10日在線提供,
機(jī)械復(fù)制天然組織的材料的需求推動(dòng)了各種新型生物材料的開發(fā)和表征。然而,材料和表征技術(shù)多樣性的結(jié)果是在該領(lǐng)域內(nèi)缺乏共識(shí),沒有明確的方法來比較通過不同方式測(cè)量的值。這可能導(dǎo)致難以在整個(gè)研究團(tuán)體中復(fù)制研究結(jié)果;近的證據(jù)表明,不同的模態(tài)不會(huì)在材料中產(chǎn)生相同的機(jī)械測(cè)量值,并且無法在不同的測(cè)試平臺(tái)之間進(jìn)行直接比較。在此,我們通過分析由五種典型生物材料機(jī)械表征技術(shù)確定的彈性模量來檢查“材料特性”是否特定于表征模態(tài):無限制壓縮,張力測(cè)定,流變測(cè)定,和微觀壓痕的宏觀層面,并在微觀上使用納米壓痕。這些分析是在兩種通常用于生物學(xué)應(yīng)用的不同聚合物凝膠中進(jìn)行的,分別是聚二甲基硅氧烷(PDMS)和瓊脂糖。每個(gè)組件的制造都涵蓋了從生理值到超生理值的一系列模量。所有這五種技術(shù)在每個(gè)材料組中都確定了相同的總體趨勢(shì),
壓縮測(cè)試
使用4毫米活檢穿孔器從制備的凝膠上沖出圓柱狀試樣,以近似于ASTM標(biāo)準(zhǔn)D575-91規(guī)定的樣品幾何形狀(直徑4毫米,厚度2毫米)的比率。根據(jù)配備的70-N或1.5-N稱重傳感器,在配備了70-N或1.5-N稱重傳感器的Mach-1機(jī)械測(cè)試儀(Biomomentum Inc.,Laval,QC,加拿大)上對(duì)樣品進(jìn)行表征。將每個(gè)試樣以0.03 mm / s的恒定速率壓縮至大約0.50應(yīng)變(壓縮距離為1.125 mm)。根據(jù)測(cè)得的力和位移數(shù)據(jù)(分別歸一化為初始樣品的橫截面面積和長度)構(gòu)建應(yīng)力-應(yīng)變曲線。彈性模量是根據(jù)該曲線的線性區(qū)域估算的,對(duì)于PDMS,線性應(yīng)變介于0.05-0.25應(yīng)變之間,而對(duì)于瓊脂糖則介于0-0.10應(yīng)變之間。
壓痕測(cè)試
使用帶有球形端探針(直徑為6.35 mm)的Mach-1機(jī)械測(cè)試儀(Biomomentum Inc.,Laval,QC,加拿大)對(duì)90 mm培養(yǎng)皿中的樣品進(jìn)行壓痕表征。根據(jù)樣品的剛性,所有樣品均使用1.5 N或70 N的稱重傳感器。為了進(jìn)行表征,先將探針高度校準(zhǔn)至不含凝膠的培養(yǎng)皿中,以標(biāo)準(zhǔn)化探針的高度。凝膠測(cè)試從系統(tǒng)的“查找接觸”模式開始,其中探針以0.03 mm / s的速度下降,直到檢測(cè)到負(fù)載為止?;诖_定的初始樣品高度,將測(cè)試設(shè)置為總探針位移為30%應(yīng)變,所有樣品的恒定速率為0.03 mm / s。壓痕數(shù)據(jù)的彈性模量是使用Hertzian模型估算的,這說明了球體與彈性固體之間的接觸力學(xué)[12,13]。為了利用赫茲模型,將測(cè)得的壓頭力與壓痕深度,
,其中,F(xiàn)是檢測(cè)到的力,R是壓頭的半徑,d是位移,而?是 是樣本的泊松比。制作了三個(gè)獨(dú)立的凝膠,用于每個(gè)樣品條件的測(cè)試,每個(gè)凝膠有六個(gè)壓痕(n = 18)。
Multi-modal characterization of polymeric gels to determine the influence of testing method on observed elastic modulus
David M. Kingsley, Caitlin H.McCleery, Christopher D.L.Johnson, Michael T.K.Bramson, Deniz Rende, Ryan J.Gilbert, David T.Corr
Journal of the Mechanical Behavior of Biomedical Materials, available online 10 January 2019,
Demand for materials that mechanically replicate native tissue has driven development and characterization of various new biomaterials. However, a consequence of materials and characterization technique diversity is a lack of consensus within the field, with no clear way to compare values measured via different modalities. This likely contributes to the difficulty in replicating findings across the research community; recent evidence suggests that different modalities do not yield the same mechanical measurements within a material, and direct comparisons cannot be made across different testing platforms. Herein, we examine whether “material properties” are characterization modality-specific by analyzing the elastic moduli determined by five typical biomaterial mechanical characterization techniques: unconfined-compression, tensiometry, rheometry, and micro-indentation at the macroscopic level, and microscopically using nanoindentation. These analyses were performed in two different polymeric gels frequently used for biological applications, polydimethylsiloxane (PDMS) and agarose. Each was fabricated to span a range of moduli, from physiologic to supraphysiologic values. All five techniques identified the same overall trend within each material group, supporting their ability to appreciate relative moduli differences. However, significant differences were found across modalities, illustrating a difference in absolute moduli values, and thereby precluding direct comparison of measurements from different characterization modalities. These observed differences may depend on material compliance, viscoelasticity, and microstructure. While determining the underlying mechanism(s) of these differences was beyond the scope of this work, these results demonstrate how each modality affects the measured moduli of the same material, and the sensitivity of each modality to changes in sample material composition.
Compression testing
Cylindrical test specimens were punched from the prepared gels, using a 4-mm biopsy punch, to approximate the ratio of sample geometries (4-mm diameter, 2-mm thickness) specified by ASTM standard D575-91. Samples were characterized on a Mach-1 mechanical tester (Biomomentum Inc., Laval, QC, Canada) equipped with either a 70-N or 1.5-N load cell, depending on sample rigidity. Each test specimen was compressed to approximately 0.50 strain (absolute compression distance of 1.125 mm) at a constant rate of 0.03 mm/s.
Indentation testing
biomomentum多軸機(jī)械測(cè)試儀Mach-1
Mach-1多軸機(jī)械測(cè)試儀是模塊化集成壓縮,拉伸,剪切,摩擦,扭轉(zhuǎn)和3D壓痕映射、電位分布等測(cè)試設(shè)備
biomomentum至1999年以來,專注用于測(cè)試生物材料,組織和關(guān)節(jié)軟骨機(jī)-電特性產(chǎn)品的設(shè)計(jì)、開發(fā)、制造和商業(yè)化的創(chuàng)新解決方案20余年。
其mach-1多軸向多功能組織材料機(jī)械特性測(cè)試分析系統(tǒng)已經(jīng)成為組織材料機(jī)械-電位測(cè)試分析的黃金標(biāo)準(zhǔn)。
1、多功能、多軸向,適用樣品范圍廣:
•1.1、從骨等硬組織材料到腦組織、眼角膜等極軟的組織材料
•1.2、從粗的椎間盤的樣品到極細(xì)的單纖維絲
2、力學(xué)類型測(cè)試分析功能齊全:
2.1、模塊化集成壓縮、張力、剪切、摩擦、扭轉(zhuǎn)、穿刺、摩擦和非平面壓痕、3D厚度、3D表面輪廓等各種力學(xué)類型支持,微觀結(jié)構(gòu)表征及動(dòng)態(tài)力學(xué)分析研究
2.2、多物理場(chǎng)耦合加載測(cè)試
•3、通高量壓痕、壓縮測(cè)試分析(48孔板中壓痕測(cè)試分析)
•4、高精度、高分辨率:
•4.1、位移分辨率達(dá)0.1um
•4.2、力分辨率達(dá)0.025mN
•4.3、樣品直徑小25um
•5、行程范圍廣:50-250mm
•6、體積小巧、可放入培養(yǎng)箱內(nèi)
•7 、DIC (Digital Image Correlation)數(shù)字圖像相關(guān)法非接觸式的高精度位移、應(yīng)變測(cè)量
•9、活性組織電位分布測(cè)試分析
•10、產(chǎn)品成熟,文獻(xiàn)量達(dá)上千篇
biomomentum多軸機(jī)械測(cè)試儀Mach-1材料力學(xué)性能簡(jiǎn)介:
biomomentum多軸機(jī)械測(cè)試儀Mach-1材料力學(xué)性能是指材料在不同環(huán)境(溫度、介質(zhì)、濕度)下,承受各種外加載荷(拉伸、壓縮、彎曲、扭轉(zhuǎn)、沖擊、交變應(yīng)力等)時(shí)所表現(xiàn)出的力學(xué)特征。
可以放進(jìn)標(biāo)準(zhǔn)培養(yǎng)箱里進(jìn)行培養(yǎng);
biomomentum多軸機(jī)械測(cè)試儀Mach-1測(cè)試意義及適用范圍:
材料力學(xué)性能可以應(yīng)用到生產(chǎn)的任何階段,從測(cè)試原材料質(zhì)量直到檢查制成品的耐用性。 測(cè)試可對(duì)廣泛多樣的生物樣品、材料和產(chǎn)品進(jìn)行,包括軟組織、軟骨組織、皮膚組織、凝膠組織、高分子材料、生物產(chǎn)品、醫(yī)學(xué)鑒定和水凝膠等。力學(xué)性能測(cè)試可幫助企業(yè)向客戶證明其產(chǎn)品的力學(xué)性能、穩(wěn)定性和安性,從而獲得基礎(chǔ)數(shù)據(jù)和競(jìng)爭(zhēng)勢(shì)。
1、多功能、多軸向,適用樣品范圍廣:
1.1、從骨等硬組織材料到腦組織、眼角膜等極軟的組織材料
1.2、從粗的椎間盤的樣品到極細(xì)的單纖維絲
2、力學(xué)類型測(cè)試分析功能齊全:
2.1、模塊化集成壓縮、張力、剪切、摩擦、扭轉(zhuǎn)、穿刺、摩擦和非平面壓痕、3D厚度、3D表面輪廓等各種力學(xué)類型支持,微觀結(jié)構(gòu)表征及動(dòng)態(tài)力學(xué)分析研究
2.2、多物理場(chǎng)耦合加載測(cè)試