密集重疊斑點(diǎn)模式多程吸收池的參數(shù)調(diào)諧隨機(jī)共振作為增強(qiáng)波長調(diào)制的工具
近日,來自安徽大學(xué)、安慶師范大學(xué)、復(fù)旦大學(xué)、皖西學(xué)院的聯(lián)合研究團(tuán)隊(duì)發(fā)表了《參數(shù)調(diào)諧隨機(jī)共振作為增強(qiáng)波長調(diào)制光譜學(xué)的工具,使用密集重疊斑點(diǎn)模式多程吸收池》論文。
Recently, the joint research team from Anhui Key Laboratory of Mine Intelligent Equipment and Technology, School of Electronic Engineering and Intelligent Manufacturing, Department of Atmospheric and Oceanic Sciences, School of Electrical and Photoelectronic Engineering, West Anhui University published an academic papers Parameter-tuning stochastic resonance as a tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell.
背景
激光吸收光譜技術(shù)已在許多應(yīng)用中得到證明,如空氣質(zhì)量監(jiān)測(cè)、工業(yè)過程控制和醫(yī)學(xué)診斷。測(cè)量的精度對(duì)這些應(yīng)用非常重要。盡管激光吸收光譜在敏感檢測(cè)方面具有許多優(yōu)點(diǎn),但仍需要很長的光學(xué)路徑長度和特殊的測(cè)量技術(shù)來檢測(cè)極微量的物質(zhì),以實(shí)現(xiàn)高檢測(cè)靈敏度。為了實(shí)現(xiàn)這些目的,通常采用具有長光學(xué)路徑的多程吸收池來增強(qiáng)吸收信號(hào)。然而,在吸收信號(hào)中經(jīng)常出現(xiàn)意想不到的干擾光束、熱噪聲、射頻噪聲、電噪聲和白噪聲,嚴(yán)重影響了檢測(cè)的精度。當(dāng)使用密集重疊斑點(diǎn)模式的多程吸收池時(shí),這些問題在激光吸收光譜中很常見。因此,從強(qiáng)噪聲背景中有效提取弱光電吸收信號(hào)具有重要意義。
已提出了幾種方法來消除噪聲的負(fù)面影響。傳統(tǒng)的弱周期信號(hào)處理方法主要包括時(shí)間平均法、濾波法和相關(guān)分析法。
① 時(shí)間平均法可以獲得信噪比(SNR)較高的信號(hào),因此可以降低噪聲的標(biāo)準(zhǔn)差并提高信號(hào)質(zhì)量。然而,這種方法無法消除強(qiáng)噪聲背景。
② 基于硬件和軟件的信號(hào)濾波廣泛用于降噪,其特點(diǎn)是帶寬較窄。在實(shí)際應(yīng)用中,期望的信號(hào)和噪聲通常具有連續(xù)的功率譜和寬帶寬,但制造與信號(hào)帶寬相匹配以去除噪聲的濾波器相對(duì)較困難。如果濾波器的帶寬非常小,噪聲將大幅衰減。然而,這可能會(huì)破壞期望的信號(hào)。
③ 相關(guān)檢測(cè)方法是通過周期信號(hào)的自相關(guān)來去除噪聲的。其本質(zhì)是建立一個(gè)非常窄的帶寬濾波器,以濾除與信號(hào)頻率不同的噪聲。與上述其他弱周期信號(hào)檢測(cè)方法相比,參數(shù)調(diào)諧隨機(jī)共振(SR)方法的優(yōu)勢(shì)顯而易見。即使噪聲和信號(hào)具有相同的頻率,只要它們達(dá)到最佳的共振匹配,SR方法就可以將部分噪聲能量轉(zhuǎn)化為信號(hào)能量,以抑制噪聲并增強(qiáng)信號(hào)。
在這項(xiàng)工作中,我們將SR方法應(yīng)用于波長調(diào)制光譜學(xué)(WMS),并使用密集重疊斑點(diǎn)模式的多程吸收池。首先,將進(jìn)行數(shù)值計(jì)算以找到合適的參數(shù)并評(píng)估最佳SR系統(tǒng)的性能,然后通過實(shí)驗(yàn)驗(yàn)證SR方法可以有效增強(qiáng)WMS信號(hào)。
Introduction
The laser absorption spectroscopy technology has been demonstrated in many applications, such as air quality monitoring, industrial process control, and medical diagnostic. The precision
of the measurement is important to those applications. Although laser absorption spectroscopy has many advantages in sensitive detection, it still needs a long optical path length and special
measurement technology for detecting a very trace substance, with a high detection sensitivity . For those purposes, a multi-pass cell with a long optical path is usually applied to enhance the absorption signal. However, the unexpected interference fringe, thermal noise, shot noise, electrical noise and white noise, often occur in absorption signals and seriously spoil the detection precision. Those problems are common for laser absorption spectroscopy when using dense overlapped spot pattern multi-pass cell. Therefore, it is of great significance to effectively extract weak photoelectric absorption signals from a strong noise background.
Several methods are proposed to eliminate the negative influence of the noise. The traditional weak periodic signal processing methods mainly include time average method, filtering method,
and correlation analysis method.
①The signal with a high signal-to-noise ratio (SNR) can be obtained by time average method, so the standard deviation of noise can be reduced and the signal quality can be improved. Nevertheless, the strong noise background cannot be fully eliminated by this method.
②The signal filters based on hardware and software are widely used for noise reduction, the characteristic of which is narrow bandwidth. In practical application, the desired signal and noise usually have a continuous power spectrum and wide bandwidth, but it is relatively difficult to manufacture a filter that matches the bandwidth of the signal to remove the noise. If the bandwidth of the filter is very small, the noise will be greatly attenuated. However, this may destroy the desired signal.
③The correlation detection method is used to remove the noise by the autocorrelation of the periodic signal. Its essence is to establish a very narrow bandwidth filter to filter out the noise, the frequency of which is different from that of the signal. Compared with other weak periodic signal detection methods mentioned above, the advantage of the parameter-tuning stochastic resonance (SR) method is apparent. Even if the noise and signal have the same frequency, as long as they reach the optimal resonance matching, the SR method can convert part of the noise energy into the signal energy to suppress the noise and enhance the signal.
In this work, the SR method is applied to the wavelength modulation spectroscopy (WMS) by using the dense overlapped spot pattern multi-pass cell. first, the numerical calculation will be implemented to find the suitable parameters and evaluate the performance of the optimal SR system, and then it is verified that the SR method can effectively enhance the WMS signal by the experiments.
實(shí)驗(yàn)裝置的示意圖如圖1所示。海爾欣光電科技有限公司為此研究提供了鎖相放大器(Healthy Photon,HPLIA),用于解調(diào)來自光電探測(cè)器的吸收信號(hào),解調(diào)頻率為第二諧波信號(hào)2f的頻率(其中f = 6千赫茲是正弦波的調(diào)制頻率)。鎖相放大器的時(shí)間常數(shù)設(shè)置為1毫秒。解調(diào)后的信號(hào)隨后由一個(gè)數(shù)據(jù)采集卡數(shù)字化,并顯示在計(jì)算機(jī)上。
A schematic diagram of the experimental setup is shown in Fig. 1. HealthyPhoton Technology Co., Ltd. provides a lock-in amplifier (HPLIA), which is used for demodulation of absorption signal from the photodetector at the frequency of second harmonic signal 2f (where f =6 KHz is the modulation frequency of the sine wave). The time constant of the lock-in amplifier is set to 1 ms. The demodulated signal is subsequently digitalized by a DAQ card and displayed on a computer.
Fig. 1. Schematic diagram of experimental device of measurement.
Healthy Photon,lock-in amplifier HPLIA
Fig. 2. 2f SR signal and 2f time average signal.
結(jié)論
參數(shù)調(diào)諧隨機(jī)共振(SR)方法可以將部分噪聲能量轉(zhuǎn)化為信號(hào)能量,以抑制噪聲并放大信號(hào),與傳統(tǒng)的弱周期信號(hào)檢測(cè)方法(例如,時(shí)間平均法、濾波法和相關(guān)分析法)相比。本研究進(jìn)行了數(shù)值計(jì)算,以找到將SR方法應(yīng)用于波長調(diào)制光譜學(xué)(WMS)的最佳共振參數(shù)。在隨機(jī)共振狀態(tài)下,2f信號(hào)的峰值(CH4濃度恒定在約20 ppm)有效放大到約0.0863 V,比4000次時(shí)間平均信號(hào)的峰值(約0.0231 V)高3.8倍。盡管標(biāo)準(zhǔn)差也從約0.0015 V(1σ)增加到約0.003 V(1σ),但信噪比相應(yīng)提高了1.83倍(從約25.9提高到約15.8)。獲得了SR 2f信號(hào)峰值與原始2f信號(hào)峰值的線性光譜響應(yīng)。這表明在強(qiáng)噪聲背景下,SR方法對(duì)增強(qiáng)光電信號(hào)是有效的。
Conclusion
The parameter-tuning stochastic resonance (SR) method can convert part of the noise energy into the signal energy to suppress the noise and amplify the signal, comparing with traditional weak periodic signal detection methods (e.g., time average method, filtering method, and correlation analysis method). In this work, the numerical calculation is conducted to find the optimal resonance parameters for applying the SR method to the wavelength modulation spectroscopy (WMS). Under the stochastic resonance state, the peak value of 2f signal (a constant concentration of CH4~20 ppm) is effectively amplified to ~0.0863 V, which is 3.8 times as much as the peak value of 4000-time average signal (~0.0231 V). Although the standard deviation also increases from ~0.0015 V(1σ) to ~0.003 V(1σ), the SNR can be improved by 1.83 times (from ~25.9 to ~15.8) correspondingly. A linear spectral response of SR 2f signal peak value to raw 2f signal peak value is obtained. It suggests that the SR method is effective for enhancing photoelectric signal under strong noise background.
參考:
Reference:
Parameter-tuning stochastic resonance as a tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell, Optics Express 32010
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。