性猛交XXXX乱大交派对,四虎影视WWW在线观看免费 ,137最大但人文艺术摄影,联系附近成熟妇女

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>選購指南>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

稀土上轉(zhuǎn)換發(fā)光材料研究光電產(chǎn)品推薦

來源:北京卓立漢光儀器有限公司   2020年05月27日 14:53  
  • 什么是上轉(zhuǎn)換發(fā)光?

斯托克斯(Stokes)定律認(rèn)為材料只能受到高能量的光激發(fā),發(fā)射出低能量的光,即經(jīng)波長短、頻率高的光激發(fā),材料發(fā)射出波長長、頻率低的光。而上轉(zhuǎn)化發(fā)光則與之相反,上轉(zhuǎn)換發(fā)光是指連續(xù)吸收兩個(gè)或者多個(gè)光子,導(dǎo)致發(fā)射波長短于激發(fā)波長的發(fā)光類型,我們亦稱之為反斯托克斯(Anti-Stokes)。

上轉(zhuǎn)換發(fā)光在有機(jī)和無機(jī)材料中均有所體現(xiàn),但其原理不同。

有機(jī)分子實(shí)現(xiàn)光子上轉(zhuǎn)換的機(jī)理是能夠通過三重態(tài)-三重態(tài)湮滅(Triplet-triplet annihilation,TTA),典型的有機(jī)分子是多環(huán)芳烴(PAHs)。

無機(jī)材料中,上轉(zhuǎn)換發(fā)光主要發(fā)生在鑭系摻雜稀土離子的化合物中,主要有NaYF4、NaGdF4、LiYF4、YF3、CaF2等氟化物或Gd2O3等氧化物的納米晶體。NaYF4是上轉(zhuǎn)換發(fā)光材料中的典型基質(zhì)材料,比如NaYF4:Er,Yb,即鐿鉺雙摻時(shí),Er做激活劑,Yb作為敏化劑。本應(yīng)用文章我們著重講講稀土摻雜上轉(zhuǎn)換發(fā)光材料(Upconversion nanoparticles,UCNPs)。

  • 鑭系摻雜稀土上轉(zhuǎn)換發(fā)光的發(fā)光原理

無機(jī)材料有三個(gè)基本發(fā)光原理:激發(fā)態(tài)吸收(Excited-state absorption, ESA),能量傳遞上轉(zhuǎn)換(Energy transfer upconversion, ETU)和光子雪崩(Photon avalanche, PA)。

Figure 3.稀土上轉(zhuǎn)換發(fā)光材料的發(fā)光原理

  • 激發(fā)態(tài)吸收

激發(fā)態(tài)吸收過程(ESA)是在1959年由Bloembergen等人提出,其原理是同一個(gè)離子從基態(tài)通過連續(xù)多光子吸收到達(dá)能量較高的激發(fā)態(tài)的過程,這是上轉(zhuǎn)換發(fā)光基本的發(fā)光過程。如Figure 3(a)同一稀土離子從基態(tài)能級通過連續(xù)的雙光子或者多光子吸收,躍遷到激發(fā)態(tài)能級,然后將能量以光輻射的形式釋放會到基態(tài)能級的過程。

  • 能量傳遞上轉(zhuǎn)換

能量傳遞是指通過非輻射過程將兩個(gè)能量相近的激發(fā)態(tài)離子通過非輻射耦合,其中一個(gè)把能量轉(zhuǎn)移給另一個(gè)回到低能態(tài),另一個(gè)離子接受能量而躍遷到更高的能態(tài)。能量傳遞上轉(zhuǎn)換可以發(fā)生在同種離子之間,也可以發(fā)生在不同的離子之間。能量傳遞包含了連續(xù)能量傳遞(Successive Energy Transfer,SET)、合作上轉(zhuǎn)換(Cooperative Upconversion,CU)和交叉弛豫(Cross Relaxation,CR)三類。1

稀土上轉(zhuǎn)換發(fā)光材料研究光電產(chǎn)品推薦

  • 光子雪崩

“光子雪崩”的上轉(zhuǎn)換發(fā)光是1979年Chivian等人在研究Lacl3晶體中的Pr3+時(shí)*發(fā)現(xiàn)的,由于它可以作為上轉(zhuǎn)換激光器的激發(fā)機(jī)制而引起了人們的廣泛關(guān)注。該機(jī)制的基礎(chǔ)是:一個(gè)能級上的粒子通過交叉弛豫在另一個(gè)能級上產(chǎn)生量子效率大于1 的抽運(yùn)效果。“光子雪崩”過程是激發(fā)態(tài)吸收和能量傳遞相結(jié)合的過程,只是能量傳輸發(fā)生在同種離子之間。

  • 相關(guān)光電產(chǎn)品推薦

卓立漢光全新形態(tài)穩(wěn)態(tài)-瞬態(tài)熒光光譜儀

擴(kuò)展配置推薦:

稀土上轉(zhuǎn)換發(fā)光測試數(shù)據(jù):

 

為了開發(fā)熒光生物探針用于高對比度深層組織熒光成像,哈爾濱工業(yè)大學(xué)研究出基于NaYF4: Yb3+, Tm3+上轉(zhuǎn)換納米顆粒的單色800nm上轉(zhuǎn)換發(fā)射,在980nm二極管激光器的激發(fā)下,通過調(diào)節(jié)800 nm上轉(zhuǎn)換發(fā)射的單色性,獲得了高對比度的熒光體成像。該成果以題為《Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging》發(fā)表在《Journal of Physical Chemistry C》上,曹文武教授、高紅教授、張治國教授為文章的共同通訊作者。文章中的熒光光譜測試數(shù)據(jù)采用卓立漢光早期SBP300系列光譜儀進(jìn)行采集。4

Figure 10.熒光光譜數(shù)據(jù):(a)NaYF4: Yb3+, Tm3+在980nm激光器激發(fā)下的上轉(zhuǎn)換發(fā)光(Tm3+摻雜濃度4%);(b) NaTmxYb0.2Y0.8-xF4(x = 0.003, 0.01, 0.02, 0.03, 0.04)的熒光光譜;(C) NaTmxYb0.2Y0.8-xF4(x = 0.003, 0.01, 0.02, 0.03, 0.04)在800nm和470nm下的發(fā)射強(qiáng)度比率;

Figure 10(a)是NaYF4: 20%Yb3+, 4%Tm3+的上轉(zhuǎn)換發(fā)射譜,只看到一個(gè)800nm下的發(fā)射峰,是高對比度深層組織熒光成像的理想情況。Figure 10(b)通過調(diào)節(jié)Tm3+的摻雜濃度來研究此現(xiàn)象的物理機(jī)理,數(shù)據(jù)中通過對800nm的發(fā)射進(jìn)行強(qiáng)度歸一化之后,發(fā)現(xiàn)470nm的發(fā)射峰隨著Tm3+的濃度增加,強(qiáng)度減弱。在Figure 10(c)上可以看到I800/I470比值隨著Tm3+摻雜濃度的增加,呈指數(shù)增長。

 

Figure 11. 熒光衰減曲線:NaYF4:20%Yb3+,0.3%Tm3+材料Tm3+1G43H6轉(zhuǎn)移(470 nm)和Yb3+2F5/22F7/2轉(zhuǎn)移(980nm)

  • Photonics Science紅外相機(jī)

短波紅外相機(jī)量子效率曲線圖

熒光成像:小鼠血管的可視化

 

紅外相機(jī)選型:

 

 

型號

PSEL VGA 15μm

PSEL qVGA 30μm

光譜響應(yīng)范圍

900-1700nm

幀頻

174fps(在全VGA分辨率下)               570fps(在1/4 VGA分辨率下)              7200fps( 640x4分辨率或光譜模式)

110 fps在全幅qVGA分辨率

芯片尺寸

9.6mm×7.68mm

像素分辨率

640×512像素 

320×256像素

單像元大小

15um × 15um

30um × 30um

滿阱容量

20k-23k e-(高增益模式) 

80k-105ke-(中增益模式)

1000K-1500k e-(低增益模式)

110k-150k e- (高增益模式)

1500k-2200k e- (低增益模式)

讀出噪聲

28-38e-(高增益模式)    

50-77e-(中增益模式)      

500-800e-(低增益模式)

110-200e-(高增益模式)          

1000-1590e-(低增益模式)

制冷溫度

-25°C (風(fēng)冷); -40°C (水冷)  

-20°C (風(fēng)冷); -40°C (水冷)  

暗電流

<0.7fA(風(fēng)冷); <0.1fA (水冷)

<8 fA(風(fēng)冷); <0.5fA (水冷)

A/D

14-bit 數(shù)字化讀出,16-bit數(shù)字化處理

曝光時(shí)間

30us-1min

1us-1s 

QE@ 1500 nm

80%

  • 參考論文:

1 Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114, 5161-5214, doi:10.1021/cr400425h (2014).

2 Yinlan Ruan, K. B., Hong Ji, Heike Ebendorff-Heidepriem, Jesper Munch, and Tanya M. Monro. in CLEO: 2013.  JM2N.5, doi:10.1364/CLEO_SI.2013.JM2N.5 (2013).

3 van Sark, W. G., de Wild, J., Rath, J. K., Meijerink, A. & Schropp, R. E. I. Upconversion in solar cells. Nanoscale Research Letters 8, 81, doi:10.1186/1556-276X-8-81 (2013).

4 Zhang, J. et al. Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging. The Journal of Physical Chemistry C 118, 2820-2825, doi:10.1021/jp410993a (2014).

5 Chosrowjan, H., Taniguchi, S. & Tanaka, F. Ultrafast fluorescence upconversion technique and its applications to proteins. FEBS J 282, 3003-3015, doi:10.1111/febs.13180 (2015).

免責(zé)聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618
古田县| 巴林左旗| 衡阳市| 会理县| 寻乌县| 吕梁市| 西林县| 平顺县| 通城县| 达日县| 沛县| 宝兴县| 武功县| 华安县| 博罗县| 潼关县| 丹凤县| 基隆市| 扬州市| 丹江口市| 阆中市| 台南县| 囊谦县| 南部县| 林州市| 山东省| 顺昌县| 奇台县| 大渡口区| 封丘县| 历史| 简阳市| 四平市| 沅陵县| 宁河县| 洪湖市| 玉屏| 哈尔滨市| 宾川县| 岢岚县| 太湖县|