性猛交XXXX乱大交派对,四虎影视WWW在线观看免费 ,137最大但人文艺术摄影,联系附近成熟妇女

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測(cè)定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>專(zhuān)業(yè)論文>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢(xún)

flexcell細(xì)胞壓力儀文獻(xiàn)

來(lái)源:flexcell代理商世聯(lián)博研(北京)科技有限公司   2020年02月19日 21:35  

flexcell細(xì)胞壓力儀典型應(yīng)用文獻(xiàn):

Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, Duterque-Coquillaud M, Mallein-Gerin F. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 7(5):e36964, 2012.
2. Bougault C, Paumier A, Aubert-Foucher E, Mallein-Gerin F. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol 8:71, 2008.
3. Chen X, Guo J, Yuan Y, Sun Z, Chen B, Tong X, Zhang L, Shen C, Zou J. Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway. Molecular Medicine Reports 15(5):2890-2896, 2017.
4. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A 20(23-24):3142-3153, 2014.
5. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells. Tissue Eng Part A 21(9-10):1720-32, 2015.
6. Fermor B, Haribabu B, Weinberg JB, Pisetsky, Guilak F. Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochemical and Biophysical Research Communications 285:806–810, 2001.

7. Fermor B, Weinberg JB, Pisetsky DS, Guilak F. The influence of oxygen tension on the induction of the nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthritis Cartilage 13:935-941, 2005.
8. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 9(4):729-737, 2001.
9. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 10:792–798, 2002.
10. Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9(5):481-487, 2001.
11. Fox DB, Cook JL, Kuroki K, Cockrell M. Effects of dynamic compressive load on collagen-based scaffolds seeded with fibroblast-like synoviocytes. Tissue Eng 12(6):1527-1537, 2006.
12. Glaeser JD, Salehi K, Kanim LE, NaPier Z, Kropf MA, Cuellar J, Sheyn D, Bae HW. Treatment with the NF?B inhibitor reduces overloading-induced MMP expression in human nucleus pulposus cells. The Spine Journal 17(10):S127, 2017.
13. Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar JL, Jacques C. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Research & Therapy 8:R135, 2006.
14. Graff RD, Lazarowski ER, Banes AJ, Lee GM. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum 43(7):1571-1579, 2000.
15. Hamid T, Xu Y, Ismahil MA, Li Q, Jones SP, Bhatnagar A, Bolli R, Prabhu SD. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 311(5):H1189-H1201, 2016.
16. Hara M, Nakashima M, Fujii T, Uehara K, Yokono C, Hashizume R, Nomura Y. Construction of collagen gel scaffolds for mechanical stress analysis. Biosci Biotechnol Biochem 78(3):458-61, 2014.
17. Hazenbiller O, Duncan NA, Krawetz RJ. Reduction of pluripotent gene expression in murine embryonic stem cells exposed to mechanical loading or Cyclo RGD peptide. BMC Cell Biol 18(1):32, 2017. doi: 10.1186/s12860-017-0148-6.
18. Hennerbichler A, Fermor B, Hennerbichler, Weinberg JB, Guilak F. Regional differences in prostaglandin E2 and nitric oxide production in the knee meniscus in response to dynamic compression. Biochemical and Biophysical Research Communications 358:1047–1053, 2007.
19. Huang D, Liu YP, Huang YJ, Xie YF, Shen KH, Zhang DW, Mou Y. Mechanical compression up-regulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts. Connect Tissue Res 55(5-6):391-6, 2014.
20. Kuroki K, Cook JL, Stoker AM, Turnquist SE, Kreeger JM, Tomlinson JL. Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression. Osteoarthritis Cartilage 13:225-234, 2005.
21. Lee CY, Hsu HC, Zhang X, Wang DY, Luo ZP. Cyclic compression and tension regulate differently the metabolism of chondrocytes. J Musculoskeletal Res 9(2):59-64, 2005.
22. Li D, Lu Z, Xu Z, Ji J, Zheng Z, Lin S, Yan T. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress. Biosci Rep 36(4), 2016. pii: e00355.
23. Li X, Dong J, Liu C, Wang X, An M, Chen W. Contributions of intermittent cyclic compression to proteoglycans synthesis and mechanical properties of knee articular cartilaginous tissue formed in vitro. Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference 4:1655-1658, 2010.
24. Maxson S, Orr D, Burg K. Bioreactors for tissue engineering. Tissue Eng 179-197, 2011.
25. Miki Y, Teramura T, Tomiyama T, Onodera Y, Matsuoka T, Fukuda K, Hamanishi C. Hyaluronan reversed proteoglycan synthesis inhibited by mechanical stress: possible involvement of antioxidant effect. Inflamm Res 59(6):471-477, 2010.
26. Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, Wehrbein H. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig 20(3):621-9, 2016.
27. Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, Berenbaum F, Houard X. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther 16(1):R16, 2014.

28. Piscoya JL, Fermor B, Kraus VB, Stabler TV, Guilak F. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthritis Cartilage 13:1092-1099, 2005.
29. Saminathan A, Sriram G, Vinoth JK, Cao T, Meikle MC. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain. Tissue Eng Part A 21(3-4):518-29, 2015.
30. Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 17(4):473-481, 2009.
31. Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, Henrotin YE. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum 64(4):1193-203. 2012.
32. Sharma R, Vinjamaram S, Shah VA, Gupta SK, Chalam KV. The effect of elevated atmospheric pressure on the survival of retinal ganglion cells using Flexcell biopress system. Invest Ophthalmol Vis Sci 44:E-Abstract 152, 2003.
33. Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308-313, 2003.
34. Tomiyama T, Fukuda K, Yamazaki K, Hashimoto K, Ueda H, Mori S, Hamanishi C. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J Rheumatol 34(3):556-562, 2007.
35. Uehara K, Hara M, Matsuo T, Namiki G, Watanabe M, Nomura Y. Hyaluronic acid secretion by synoviocytes alters under cyclic compressive load in contracted collagen gels. Cytotechnology 67(1):19-26, 2015.
36. Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963-969, 2003.
37. Werkmeister E, de Isla N, Netter P, Stoltz JF, Dumas D. Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy. Photochem Photobiol 86(2):302-310, 2010.
38. Xu HG, Zhang W, Zheng Q, Yu YF, Deng LF, Wang H, Liu P, Zhang M. Investigating conversion of endplate chondrocytes induced by intermittent cyclic mechanical unconfined compression in three-dimensional cultures. European Journal of Histochemistry 58:2415, 2014.
39. Zhou Q, Yu BH, Liu WC, Wang ZL. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs. In Vitro Cell Dev Biol Anim 52(7):757-71, 2016.
40. Zhou W, Liu G, Yang S, Ye S. Investigation for effects of cyclical dynamic compression on matrix metabolite and mechanical properties of chondrocytes cultured in alginate. Journal of Hard Tissue Biology 25(4):351-356, 2016.

細(xì)胞壓力儀,flexcell FX-5000C-

 FX-5000C細(xì)胞壓力加載培養(yǎng)與實(shí)時(shí)觀察系統(tǒng)(flexcell FX5000 Compression system)現(xiàn)貨銷(xiāo)售

美國(guó)Flexcell公司專(zhuān)注于細(xì)胞組織應(yīng)力(牽張拉伸應(yīng)力、三維水凝膠牽張拉伸應(yīng)力、壓應(yīng)力和流體切應(yīng)力等)加載刺激培養(yǎng)產(chǎn)品的設(shè)計(jì)和制造,提供*的體外細(xì)胞拉應(yīng)力、壓應(yīng)力和流體剪切應(yīng)力加載刺激與立體水凝膠支架三維細(xì)胞組織牽拉加載培養(yǎng)系統(tǒng)而*。其產(chǎn)品成熟度高、成功應(yīng)用文獻(xiàn)量達(dá)4000多篇,國(guó)內(nèi)有包括上海交通大學(xué)、復(fù)旦大學(xué)、同濟(jì)大學(xué)、上海第九醫(yī)院、中科院力學(xué)所、北京大學(xué)第三醫(yī)院、北航生物與醫(yī)學(xué)工程學(xué)院、都醫(yī)科大學(xué)、廣州醫(yī)科大學(xué)、南方科技大學(xué)、福建協(xié)和醫(yī)院、南方醫(yī)科大學(xué)近100家成功高校、醫(yī)院及基礎(chǔ)科研單位使用,無(wú)技術(shù)風(fēng)險(xiǎn)和使用風(fēng)險(xiǎn),flexcell體外高通量細(xì)胞牽張拉伸力、壓應(yīng)力以及流體剪切力加載培養(yǎng)系統(tǒng)已成為細(xì)胞力學(xué)體外加載模型的黃金標(biāo)準(zhǔn),是細(xì)胞組織力學(xué)研究者的shou選。

FX-5000C細(xì)胞壓力加載系統(tǒng)(flexcell FX5000 Compression system)——提供樣機(jī)體驗(yàn)

系統(tǒng)基本原理(正氣壓交換模式):

利用橡膠密封墊在細(xì)胞培養(yǎng)板基底膜與基座之間形成封閉腔,把此密封腔的進(jìn)、出氣管插入二氧化碳培養(yǎng)箱里,把此密封腔放入二氧化碳培養(yǎng)箱,利用封閉腔正氣壓擠壓培養(yǎng)孔里的活塞,進(jìn)而使活塞和固定臺(tái)之間的凝膠三維培養(yǎng)物間接受到壓力發(fā)生形變,通過(guò)計(jì)算機(jī)控制系統(tǒng)調(diào)節(jié)氣體的壓力來(lái)改變基底膜的形變量。

(注釋?zhuān)簤毫虞d培養(yǎng)板每個(gè)培養(yǎng)孔里都有一對(duì)活塞或固定臺(tái))

亮點(diǎn)

1)該系統(tǒng)對(duì)各種組織、三維細(xì)胞培養(yǎng)物提供周期性或靜態(tài)的壓力加載;
2)基于柔性膜基底變形、受力均勻;
3)可實(shí)時(shí)觀察細(xì)胞、組織在壓力作用下的反應(yīng);
4)可有選擇性地封阻對(duì)細(xì)胞的應(yīng)力加載;

5)同時(shí)兼?zhèn)涠嗤ǖ兰?xì)胞牽拉力加載功能;

6)多達(dá)4通道,可4個(gè)不同程序同時(shí)運(yùn)行,進(jìn)行多個(gè)不同壓力形變率對(duì)比實(shí)驗(yàn);

7)同一程序中可以運(yùn)行多種頻率(0.01- 5 Hz),多種振幅和多種波形;
8)更好地控制在超低或超高應(yīng)力下的波形;
9)多種波形種類(lèi):靜態(tài)波形、正旋波形、心動(dòng)波形、三角波形、矩形以及各種特制波形;
10)電腦系統(tǒng)對(duì)壓力加載周期、大小、頻率、持續(xù)時(shí)間智能調(diào)控
11)壓力范圍:0.1 - 14磅,夾在活塞和固定臺(tái)之間的BioPress細(xì)胞培養(yǎng)板可承受正壓力的大值為14磅,小值為0.1磅。
12)典型應(yīng)用科室: 
檢測(cè)各種三維細(xì)胞組織在壓力作用下的生物變化、反應(yīng), 
例如:軟骨組織,椎間盤(pán)骨組織,肌腱組織,韌帶組織,以及從肌肉,肺,心臟,血管,皮膚,肌腱,韌帶,軟骨和骨中分離出來(lái)的細(xì)胞。 
13)在智能電腦主機(jī)的控制下,壓力傳導(dǎo)儀內(nèi)的密封閥門(mén)裝置自動(dòng)調(diào)節(jié)和控制壓力。 
14)系統(tǒng)具有模塊化易升級(jí),可擴(kuò)展拉應(yīng)力加載、流利切應(yīng)力加載、三維細(xì)胞組織培養(yǎng)功能。具有細(xì)胞組織力學(xué)所要求的所有類(lèi)型:牽張拉伸力、壓力、流體切應(yīng)力加載刺激功能。 
15)通過(guò)StagePress顯微壓應(yīng)力加載設(shè)備,實(shí)時(shí)觀察細(xì)胞、組織在拉/壓應(yīng)力作用下的反應(yīng) 
16)FX-5000C細(xì)胞組織壓應(yīng)力加載系統(tǒng)組成:

  • 預(yù)裝FlexSoft®FX-5000軟件的的計(jì)算機(jī);
  • FX5K™ Compression FlexLink壓力加載控制傳導(dǎo)儀
  • 一個(gè)正壓力加載培養(yǎng)腔室基板
  • 一套密封墊片和壓力夾固系統(tǒng)
  • 四塊六孔細(xì)胞壓力加載培養(yǎng)板
  • 一根25英尺藍(lán)色Flex In鏈接管(6.4毫米外徑)
  • 一根25英尺無(wú)色Flex Out鏈接管(9.5毫米外徑)
  • 一根25英尺牽張拉伸泵鏈接藍(lán)管(9.5毫米外徑)
  • 一臺(tái)正壓泵

     

    細(xì)胞組織壓應(yīng)力加載刺激系統(tǒng)總結(jié)

    培養(yǎng)物級(jí)別

    既能對(duì)各種組織培養(yǎng)物提供周期性的或靜態(tài)的壓力加載,又能對(duì)各種三維細(xì)胞培養(yǎng)物提供周期性的或靜態(tài)的壓力加載

    壓應(yīng)力波形

    系統(tǒng)既能提供壓應(yīng)力加載的靜態(tài)波形、正旋波形、心動(dòng)波形、三角波形、矩形波形,又能模擬各種自定義波形, 很好地控制在超低或超高壓應(yīng)力下的波形.

    多通道加載

    同一程序中可以運(yùn)行多種頻率,多種振幅和多種波形,4個(gè)不同程序可以同時(shí)運(yùn)行,方便進(jìn)行不同壓力比對(duì)比實(shí)驗(yàn);

    壓力范圍

    0.1 - 14磅

    加載頻率

    0.01- 5 Hz

    壓應(yīng)力刺激細(xì)胞組織類(lèi)型

    能對(duì)軟骨組織、椎間盤(pán)骨組織、肌腱組織、韌帶組織,以及從肌肉、肺、心臟、血管、皮膚、肌腱、韌帶、軟骨和骨中分離出來(lái)的細(xì)胞加壓應(yīng)力刺激;

    觀察

    在壓應(yīng)力作用的同時(shí),可以實(shí)時(shí)觀察細(xì)胞組織在壓應(yīng)力作用下的反應(yīng)

    易用性

    使用常規(guī)的細(xì)胞組織壓力加載刺激培養(yǎng)板或培養(yǎng)皿模式進(jìn)行加載培養(yǎng),符合常規(guī)操作,避免學(xué)習(xí)難度

免責(zé)聲明

  • 凡本網(wǎng)注明“來(lái)源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來(lái)源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來(lái)源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類(lèi)作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來(lái)源,并自負(fù)版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開(kāi)通此功能
詳詢(xún)客服 : 0571-87858618
晋江市| 应用必备| 大名县| 井陉县| 井研县| 福建省| 水城县| 武威市| 克什克腾旗| 伊川县| 余干县| 磐安县| 东山县| 海门市| 宣化县| 兴海县| 昭通市| 平度市| 南昌市| 军事| 麻栗坡县| 中方县| 库伦旗| 南华县| 邵武市| 贡嘎县| 南通市| 东莞市| 乌拉特前旗| 山东省| 璧山县| 青海省| 珲春市| 如东县| 庐江县| 上思县| 镇宁| 开原市| 邯郸县| 绥滨县| 安国市|