性猛交XXXX乱大交派对,四虎影视WWW在线观看免费 ,137最大但人文艺术摄影,联系附近成熟妇女

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>技術(shù)文章>Nanobrook Omni測(cè)量應(yīng)用案例-65

技術(shù)文章

Nanobrook Omni測(cè)量應(yīng)用案例-65

閱讀:245          發(fā)布時(shí)間:2018-12-12
 文獻(xiàn)名:Spontaneous Imbibition Investigation of Self-Dispersing Silica Nanofluids for Enhanced Oil Recovery in Low-Permeability Cores 

 

作者:Caili Dai, Xinke Wang, Yuyang Li, Wenjiao Lv, Chenwei Zou, Mingwei Gao, and Mingwei Zhao

State Key Laboratory of Heavy Oil Processing, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, Peoples Republic of China 

 

 

摘要:A new kind of self-dispersing silica nanoparticle was prepared and used to enhance oil recovery in spontaneous imbibition tests of low-permeability cores. To avoid the aggregation of silica nanoparticles, a new kind of silica nanoparticle was prepared through the surface modification with vinyltriethoxysilane and 2-mercaptobenzimidazole as modified agents. Transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and ζ potential measurements were employed to characterize the modified silica nanoparticles. Dispersing experiments indicated that modified silica nanoparticles had superior dispersity and stability in alkaline water. To evaluate the performance of silica nanofluids for enhanced oil recovery compared to pH 10 alkaline water and 5 wt % NaCl solution, spontaneous imbibition tests in sandstone cores were conducted. The results indicated that silica nanofluids can evidently improve oil recovery. To investigate the mechanism of nanoparticles for enhanced oil recovery, the contact angle and interfacial tension were measured. The results showed that the adsorption of silica nanoparticles can change the surface wettability from oil-wet to water-wet and silica nanoparticles showed a little influence on oil/water interfacial tension. In addition, the change of the oil droplet shape on the hydrophobic surface was monitored through dynamic contact angle measurement. It was shown that silica nanoparticles can gradually detach the oil droplet from the hydrophobic surface, which is consistent with the structural disjoining pressure mechanism.

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 意見(jiàn)反饋 在線交流

掃一掃訪問(wèn)手機(jī)商鋪
010-62081908
在線留言
濉溪县| 白银市| 航空| 徐水县| 稻城县| 福鼎市| 科尔| 南充市| 绍兴县| 安龙县| 锡林郭勒盟| 香格里拉县| 闵行区| 新邵县| 大渡口区| 吉木萨尔县| 新昌县| 新邵县| 柳江县| 施甸县| 格尔木市| 宣城市| 葫芦岛市| 辽宁省| 湘西| 玉屏| 若尔盖县| 揭东县| 上饶市| 克东县| 中西区| 衡阳市| 牡丹江市| 青铜峡市| 句容市| 天水市| 五华县| 永年县| 泰安市| 怀集县| 昭通市|