西門子變頻器型號有哪些1FL6052-2AF21-2LG1
電路是給異步電動機提供調壓調頻電源的電力變換部分,變頻器的主電路大體上可分為兩類:電壓型是將電壓源的直流變換為交流的變頻器,直流回路的濾波是電容。電流型是將電流源的直流變換為交流的變頻器,其直流回路濾波是電感。它由三部分構成,將工頻電源變換為直流功率的“整流器",吸收在變流器和逆變器產(chǎn)生的電壓脈動的“平波回路",以及將直流功率變換為交流功率的“逆變器“。整流器
大量使用的是二極管的變流器,它把工頻電源變換為直流電源。也可用兩組晶體管變流器構成可逆變流器,由于其功率方向可逆,可以進行再生運轉。
平波回路
在整流器整流后的直流電壓中,含有電源6倍頻率的脈動電壓,此外逆變器產(chǎn)生的脈動電流也使直流電壓變動。為了抑制電壓波動,采用電感和電容吸收脈動電壓(電流)。裝置容量小時,如果電源和主電路構成器件有余量,可以省去電感采用簡單的平波回路。
逆變器
同整流器相反,逆變器是將直流功率變換為所要求頻率的交流功率,以所確定的時間使6個開關器件導通、關斷就可以得到3相交流輸出。以電壓型pwm逆變器為例示出開關時間和電壓波形。
控制電路是給異步電動機供電(電壓、頻率可調)的主電路提供控制信號的回路,它有頻率、電壓的“運算電路",主電路的“電壓、電流檢測電路",電動機的“速度檢測電路",將運算電路的控制信號進行放大的“驅動電路",以及逆變器和電動機的“保護電路"組成。 [4]
(1)運算電路:將外部的速度、轉矩等指令同檢測電路的電流、電壓信號進行比較運算,決定逆變器的輸出電壓、頻率。
(2)電壓、電流檢測電路:與主回路電位隔離檢測電壓、電流等。 [4]
(3)驅動電路:驅動主電路器件的電路。它與控制電路隔離使主電路器件導通、關斷。
(4)速度檢測電路:以裝在異步電動機軸機上的速度檢測器(tg、plg等)的信號為速度信號,送入運算回路,根據(jù)指令和運算可使電動機按指令速度運轉。
(5)保護電路:檢測主電路的電壓、電流等,當發(fā)生過載或過電壓等異常時,為了防止逆變器和異步電動機損壞變頻節(jié)能
變頻器節(jié)能主要表現(xiàn)在風機、水泵的應用上。風機、泵類負載采用變頻調速后,節(jié)電率為20%~60%,這是因為風機、泵類負載的實際消耗功率基本與轉速的三次方成比例。當用戶需要的平均流量較小時,風機、泵類采用變頻調速使其轉速降低,節(jié)能效果非常明顯。而傳統(tǒng)的風機、泵類采用擋板和閥門進行流量調節(jié),電動機轉速基本不變,耗電功率變化不大。據(jù)統(tǒng)計,風機、泵類電動機用電量占全國用電量的31%,占工業(yè)用電量的50%。在此類負載上使用變頻調速裝置具有非常重要的意義。目前,應用較成功的有恒壓供水、各類風機、中央空調和液壓泵的變頻調速。
在自動化系統(tǒng)中應用
它是以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉磁場軌跡為目的,一次生成三相調制波形,以內(nèi)切多邊形逼近圓的方式進行控制的。經(jīng)實踐使用后又有所改進,即引入頻率補償,能消除速度控制的誤差;通過反饋估算磁鏈幅值,消除低速時定子電阻的影響;將輸出電壓、電流閉環(huán),以提高動態(tài)的精度和穩(wěn)定度。但控制電路環(huán)節(jié)較多,且沒有引入轉矩的調節(jié),所以系統(tǒng)性能沒有得到*。
矢量控制(VC)方式
矢量控制變頻調速的做法是將異步電動機在三相坐標系下的定子電流Ia、Ib、Ic、通過三相-二相變換,等效成兩相靜止坐標系下的交流電流Ia1Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流Im1、It1(Im1相當于直流電動機的勵磁電流;It1相當于與轉矩成正比的電樞電流),然后模仿直流電動機的控制方法,求得直流電動機的控制量,經(jīng)過相應的坐標反變換,實現(xiàn)對異步電動機的控制。其實質是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制。通過控制轉子磁鏈,然后分解定子電流而獲得轉矩和磁場兩個分量,經(jīng)坐標變換,實現(xiàn)正交或解耦控制。矢量控制方法的提出具有劃時代的意義。然而在實際應用中,由于轉子磁鏈難以準確觀測,系統(tǒng)特性受電動機參數(shù)的影響較大,且在等效直流電動機控制過程中所用矢量旋轉變換較復雜,使得實際的控制效果難以達到理想分析的結果。 [8]
直接轉矩控制(DTC)方式
1985年,德國魯爾大學的
西門子變頻器型號有哪些1FL6052-2AF21-2LG1