產地類別 | 進口 | 電動機功率 | 1.9kW |
---|---|---|---|
外形尺寸 | 43*81mm | 應用領域 | 醫(yī)療衛(wèi)生,化工,建材,電子,紡織皮革 |
重量 | 2kg | 電壓 | 360V |
產品簡介
詳細介紹
伺服電機依照交換機處理幀時不同的操作模式,主要可分為兩類:
存儲轉發(fā):交換機在轉發(fā)之前必須接收整個幀,并進行錯誤校檢,如無錯誤再將這一幀發(fā)往目的地址。幀通過交換機的轉發(fā)時延隨幀長度的不同而變化。
直通式:交換機只要檢查到幀頭中所包含的目的地址就立即轉發(fā)該幀,而無需等待幀全部的被接收,也不進行錯誤校驗。由于以太網幀頭的長度總是固定的,因此幀通過交換機的轉發(fā)時延也保持不變。
二層交換(也稱為橋接)是基于硬件的橋接?;诿總€末端站點的MAC地址轉發(fā)數(shù)據包。二層交換的高性能可以產生增加各子網主機數(shù)量的網絡設計。其仍然有橋接所具有的特性和限制。
三層交換是基于硬件的路由選擇。路由器和第三層交換機對數(shù)據包交換操作的主要區(qū)別在于物理上的實施。
四層交換的簡單定義是:不僅基于MAC(第二層橋接)或源/目的地IP地址(第三層路由選擇),同時也基于TCP/UDP應用端口來做出轉發(fā)決定的能力。其使網絡在決定路由時能夠區(qū)分應用。能夠基于具體應用對數(shù)據流進行優(yōu)先級劃分。它為基于策略的服務質量技術提供了更加細化的解決方案。提供了一種可以區(qū)分應用類型的方法。
二層交換技術從網橋發(fā)展到VLAN(虛擬局域網),在局域網建設和改造中得到了廣泛的應用。第二層交換技術是工作在OSI七層網絡模型中的第二層,即數(shù)據鏈路層。它按照所接收到數(shù)據包的目的MAC地址來進行轉發(fā),對于網絡層或者高層協(xié)議來說是透明的。它不處理網絡層的IP地址,不處理高層協(xié)議的諸如TCP、UDP的端口地址,它只需要數(shù)據包的物理地址即MAC地址,數(shù)據交換是靠硬件來實現(xiàn)的,其速度相當快,這是二層交換的一個顯著的優(yōu)點。但是,它不能處理不同IP子網之間的數(shù)據交換。傳統(tǒng)的路由器可以處理大量的跨越IP子網的數(shù)據包,但是它的轉發(fā)效率比二層低,因此要想利用二層轉發(fā)效率高這一優(yōu)點,又要處理三層IP數(shù)據包,三層交換技術就誕生了。
三層交換技術的工作原理
第三層交換工作在OSI七層網絡模型中的第三層即網絡層,是利用第三層協(xié)議中的IP包的包頭信息來對后續(xù)數(shù)據業(yè)務流進行標記,具有同一標記的業(yè)務流的后續(xù)報文被交換到第二層數(shù)據鏈路層,從而打通源IP地址和目的IP地址之間的一條通路。這條通路經過第二層鏈路層。有了這條通路,三層交換機就沒有必要每次將接收到的數(shù)據包進行拆包來判斷路由,而是直接將數(shù)據包進行轉發(fā),將數(shù)據流進行交換
二層交換技術是發(fā)展比較成熟,二層交換機屬數(shù)據鏈路層設備,可以識別數(shù)據包中的MAC地址信息,根據MAC地址進行轉發(fā),并將這些MAC地址與對應的端口記錄在自己內部的一個地址表中。具體的工作流程如下:
(1)當交換機從某個端口收到一個數(shù)據包,它先讀取包頭中的源MAC地址,這樣它就知道源MAC地址的機器是連在哪個端口上的;
(2) 再去讀取包頭中的目的MAC地址,并在地址表中查找相應的端口;
(3) 如表中有與這目的MAC地址對應的端口,把數(shù)據包直接復制到這端口上;
(4)如表中找不到相應的端口則把數(shù)據包廣播到所有端口上,當目的機器對源機器回應時,交換機又可以學習一目的MAC地址與哪個端口對應,在下次傳送數(shù)據時就不再需要對所有端口進行廣播了。
不斷的循環(huán)這個過程,對于全網的MAC地址信息都可以學習到,二層交換機就是這樣建立和維護它自己的地址表。
從二層交換機的工作原理可以推知以下三點:
(1)由于交換機對多數(shù)端口的數(shù)據進行同時交換,這就要求具有很寬的交換總線帶寬,如果二層交換機有N個端口,每個端口的帶寬是M,交換機總線帶寬超過N×M,那么這交換機就可以實現(xiàn)線速交換;
(2) 學習端口連接的機器的MAC地址,寫入地址表,地址表的大小(一般兩種表示方式:一為BEFFER RAM,一為MAC表項數(shù)值),地址表大小影響交換機的接入容量;
(3) 還有一個就是二層交換機一般都含有專門用于處理數(shù)據包轉發(fā)的ASIC (Application specific Integrated Circuit)芯片,因此轉發(fā)速度可以做到非???。由于各個廠家采用ASIC不同,直接影響產品性能。
以上三點也是評判二三層交換機性能優(yōu)劣的主要技術參數(shù),這一點請大家在考慮設備選型時注意比較。
路由技術
路由器工作在OSI模型的第三層---網絡層操作,其工作模式與二層交換相似,但路由器工作在第三層,這個區(qū)別決定了路由和交換在傳遞包時使用不同的控制信息,實現(xiàn)功能的方式就不同。工作原理是在路由器的內部也有一個表,這個表所標示的是如果要去某一個地方,下一步應該向那里走,如果能從路由表中找到數(shù)據包下一步往那里走,把鏈路層信息加上轉發(fā)出去;如果不能知道下一步走向那里,則將此包丟棄,然后返回一個信息交給源地址。
伺服電機路由技術實質上來說不過兩種功能:決定*路由和轉發(fā)數(shù)據包。路由表中寫入各種信息,由路由算法計算出到達目的地址的最佳路徑,然后由相對簡單直接的轉發(fā)機制發(fā)送數(shù)據包。接受數(shù)據的下一臺路由器依照相同的工作方式繼續(xù)轉發(fā),依次類推,直到數(shù)據包到達目的路由器。
而路由表的維護,也有兩種不同的方式。一種是路由信息的更新,將部分或者全部的路由信息公布出去,路由器通過互相學習路由信息,就掌握了全網的拓撲結構,這一類的路由協(xié)議稱為距離矢量路由協(xié)議;另一種是路由器將自己的鏈路狀態(tài)信息進行廣播,通過互相學習掌握全網的路由信息,進而計算出最佳的轉發(fā)路徑,這類路由協(xié)議稱為鏈路狀態(tài)路由協(xié)議。
由于路由器需要做大量的路徑計算工作,一般處理器的工作能力直接決定其性能的優(yōu)劣。當然這一判斷還是對中低端路由器而言,因為路由器往往采用分布式處理系統(tǒng)體系設計。