性猛交XXXX乱大交派对,四虎影视WWW在线观看免费 ,137最大但人文艺术摄影,联系附近成熟妇女

您好, 歡迎來到化工儀器網(wǎng)

| 注冊| 產(chǎn)品展廳| 收藏該商鋪

18702200545

technology

首頁   >>   技術(shù)文章   >>   固態(tài)電池,最新Science!

凱爾測控試驗系統(tǒng)(天津)...

立即詢價

您提交后,專屬客服將第一時間為您服務(wù)

固態(tài)電池,最新Science!

閱讀:1009      發(fā)布時間:2023-9-22
分享:

       與用于日常手機和電動汽車的傳統(tǒng)鋰離子電池相比,固態(tài)電池(SSBs)具有重要的潛在優(yōu)勢。在這些潛在優(yōu)勢中,有更高的能量密度和更快的充電速度。由于沒有易燃有機溶劑,固體電解質(zhì)分離器還可以提供更長的壽命、更寬的工作溫度和更高的安全性。SSBs的一個關(guān)鍵方面是其微觀結(jié)構(gòu)對質(zhì)量傳輸驅(qū)動的尺寸變化(應(yīng)變)的應(yīng)力響應(yīng)。在液體電解質(zhì)電池中,正極顆粒中也存在成分應(yīng)變,但在SSBs中,這些應(yīng)變導致膨脹或收縮的電極顆粒與固體電解質(zhì)之間的接觸力學問題。在陽極側(cè),鋰金屬的電鍍在與固體電解質(zhì)的界面上產(chǎn)生了自己的復(fù)雜應(yīng)力狀態(tài)。SSBs的一個關(guān)鍵特征是,這種電鍍不僅可以發(fā)生在電極-電解質(zhì)界面上,而且可以發(fā)生在固體電解質(zhì)本身、氣孔內(nèi)或沿晶界。這種受限的鋰沉積形成了具有高靜水壓應(yīng)力的區(qū)域,能夠在電解質(zhì)中引發(fā)破裂。盡管SSBs中的大多數(shù)故障是由機械驅(qū)動的,但大多數(shù)研究都致力于改善電解質(zhì)的離子傳輸和電化學穩(wěn)定性。為了彌補這一差距,在這篇綜述中,美國橡樹嶺國家實驗室Sergiy Kalnaus提出了SSB的力學框架,并審查了該領(lǐng)域的前端研究,重點是壓力產(chǎn)生、預(yù)防和緩解的機制。相關(guān)論文以“Solid-state batteries: The critical role of mechanics"為題,發(fā)表在Science。


圖片
具有高電化學穩(wěn)定性的固體電解質(zhì)與鋰金屬和離子電導率高于任何液體電解質(zhì)的硫化物固體電解質(zhì)的發(fā)現(xiàn),促使研究界轉(zhuǎn)向SSBs。盡管這些發(fā)現(xiàn)已經(jīng)播下了SSBs可以實現(xiàn)快速充電和能量密度加倍的愿景,但只有充分了解電池材料的機械行為并且將多尺度力學集成到SSBs的開發(fā)中,才能實現(xiàn)這一承諾。
圖片
固態(tài)電池的前景
開發(fā)下一代固態(tài)電池(SSBs)需要我們思考和設(shè)計材料挑戰(zhàn)解決方案的方式發(fā)生范式轉(zhuǎn)變,包括概念化電池及其接口運行的方式(圖1)。采用鋰金屬陽極和層狀氧化物或轉(zhuǎn)化陰極的固態(tài)鋰金屬電池有可能使當今的使用液體電解質(zhì)的鋰離子電池的比能量幾乎增加一倍。然而,存儲和釋放這種能量會伴隨著電極的尺寸變化:陰極的晶格拉伸和扭曲以及陽極的金屬鋰沉積。液體電解質(zhì)可以立即適應(yīng)電極的體積變化,而不會在電解質(zhì)中積聚應(yīng)力或失去與陰極顆粒的接觸。然而,當改用SSBs時,這些成分應(yīng)變、它們引起的應(yīng)力以及如何緩解這些應(yīng)力對于電池性能至關(guān)重要。SSBs中的大多數(shù)故障首先是機械故障。SSBs的成功設(shè)計將與材料如何有效地管理這些電池中的應(yīng)力和應(yīng)變的演變密切相關(guān)。
要在SSBs中實現(xiàn)高能量,最重要的是使用鋰金屬陽極。從以往來看,鋰金屬陽極一直被認為是不安全的,因為鋰沉積物有可能生長,鋰沉積物會穿透電池,導致短路和隨后的熱失控。解決鋰生長問題最有希望的解決方案是使用固態(tài)電解質(zhì)(SSE)代替液體電解質(zhì),因為它具有機械抑制鋰枝晶滲透的潛力。然而,原型固態(tài)鋰金屬電池的實際經(jīng)驗表明,即使是強的電解質(zhì)材料,鋰也具有不同尋常的滲透和破裂傾向。解決陰極-電解質(zhì)界面和鋰-電解質(zhì)界面挑戰(zhàn)的關(guān)鍵是清楚地了解涉及電池相關(guān)長度尺度、溫度和應(yīng)變率的所有材料的力學原理。
圖片
圖 1.鋰金屬SSBs及其相應(yīng)的力學和傳遞現(xiàn)象的示意圖
【SSBs中運行的壓力釋放機制】
由于鋰傳輸和沉積不可避免地會產(chǎn)生局部應(yīng)力,因此考慮鋰金屬和SSE中可能的應(yīng)力消除機制至關(guān)重要。目標是激活非彈性或粘彈性應(yīng)變以降低應(yīng)力大小。這種激活機制在不同類別的固體電解質(zhì)和金屬鋰中是不同的。固態(tài)電解質(zhì)是否能夠管理由氧化還原反應(yīng)施加的應(yīng)變引起的應(yīng)力將取決于在所施加的電流密度(應(yīng)變率)和工作溫度下操作應(yīng)力消除機制的可用性。當非彈性流無法在特定的長度和時間尺度下激活時,應(yīng)力通過斷裂進行釋放。
圖片
圖 2.鋰金屬的長度尺度和速率依賴性力學
【陶瓷的塑性變形】
SSBs中的主要應(yīng)力來源包括(i)Li鍍?nèi)牍腆w電解質(zhì)中的缺陷,(ii)由于固體電解質(zhì)約束的陰極顆粒膨脹而產(chǎn)生的應(yīng)力,以及(iii)外部施加到電池上的應(yīng)力(典型的應(yīng)力)。SSBs工程的目標是采用能夠在SSBs中可逆變形并限制應(yīng)力而不產(chǎn)生斷裂的電池材料組合。雖然通過擴散流或位錯滑移來限制應(yīng)力累積是金屬鋰的合適機制,但陶瓷電解質(zhì)在室溫下不會激活滑移系統(tǒng),而是會斷裂。在這種情況下,材料的增韌不是通過位錯的產(chǎn)生而是通過移動現(xiàn)有位錯來實現(xiàn)的。因此,關(guān)鍵是有意在材料中引入高位錯密度,以便有可能在裂紋周圍的小體積中找到足夠的位錯(圖 3)。
具有高抗斷裂性的非晶固體電解質(zhì)的一個例子是鋰磷氮氧化物(Lipon)。使用這種非晶薄膜固體電解質(zhì)構(gòu)建的電池已成功循環(huán)超過10,000次,容量保持率為 95%,并且沒有鋰滲透 (6。此外,已證明電流密度高達10 mA/cm2。對無定形Lipon力學的研究有限,但表明制備成薄膜時材料堅固。Lipon具有一定程度的延展性。這種延性行為在中得到了進一步揭示,表明Lipon可以在剪切中致密和變形以降低應(yīng)力強度。
圖片
圖 3.通過非晶材料中的致密化和剪切流動觸發(fā)塑性,并通過在結(jié)晶陶瓷中引入位錯來增韌,從而避免斷裂
對離子傳導非晶材料和玻璃的變形行為和斷裂的研究相當有限。然而,在Lipon中,室溫下觀察到與LPS玻璃類似的部分恢復(fù)。根據(jù)分子動力學(MD)模擬,有人提出Lipon中的致密化是通過P-O-P鍵角的變化而發(fā)生的。這種結(jié)構(gòu)變化可能是可逆粘彈性應(yīng)變背后的原因。然而,由于MD方法無法實現(xiàn)時間尺度,模擬致密化恢復(fù)是不可行的。在不需要外部能量輸入的情況下至少部分恢復(fù)致密體積的能力值得進一步研究。在循環(huán)負載下,這種部分恢復(fù)會產(chǎn)生類似磁滯的循環(huán)行為(圖 4)。
圖片
圖 4. 在循環(huán)加載納米壓痕時,Lipon的形變恢復(fù)會導致類似滯后的行為
【電化學疲勞】
盡管已經(jīng)在應(yīng)力消除的背景下討論了斷裂,但斷裂的起源通常要復(fù)雜得多。在傳統(tǒng)結(jié)構(gòu)材料中,循環(huán)應(yīng)力和應(yīng)變會導致?lián)p傷累積,最終導致斷裂失效?;钚噪姌O材料對由主體結(jié)構(gòu)中鋰的重復(fù)插入和脫除引起的循環(huán)電化學負載做出響應(yīng),其方式類似于對外部機械力的循環(huán)施加的結(jié)構(gòu)響應(yīng)。對于陰極,由此產(chǎn)生的變化導致在兩個不同長度和時間尺度上不可逆的損傷累積,并由不同的機制驅(qū)動:(i)多晶陰極顆粒中的晶間斷裂,以及(ii)單陰極顆粒中鋰化引起的位錯動力學和穿晶斷裂。
電極顆粒的循環(huán)電化學應(yīng)變導致尺寸變化,足以擴展固體電解質(zhì)和陰極活性材料之間的界面裂紋。固體電解質(zhì)內(nèi)可以產(chǎn)生額外的裂紋,作為界面裂紋的延伸或作為新的斷裂表面,作為減少SSBs中大而復(fù)雜的應(yīng)力的方法(圖 5)?,F(xiàn)有的實驗證據(jù)表明,大多數(shù)此類界面破裂發(fā)生在第一個循環(huán)內(nèi),并導致初始容量損失。然而,這種裂紋的演變可能是一個循環(huán)過程,讓人想起疲勞裂紋的擴展;目前,還沒有足夠的實驗信息來自信地支持或拒絕這一假設(shè)。
圖片
圖 5.復(fù)合固態(tài)陰極的疲勞損傷
【固體電解質(zhì)中的鋰增長】
根據(jù)目前對固體電解質(zhì)失效的理解,裂紋的形成對鋰通過陶瓷電解質(zhì)隔膜的擴展起著重要的作用。大多數(shù)鋰誘導失效的理論處理都認為鋰絲是從金屬-電解質(zhì)界面向電解質(zhì)主體傳播的(模式I降解)。然而,鋰的還原和隨后的鋰沉積很容易發(fā)生在電解質(zhì)內(nèi),遠離與鋰的界面(模式II降解)。最后,可以想象這樣一種情況,即鋰沿著多晶陶瓷電解質(zhì)的晶界均勻地沉積,從而穿過電解質(zhì)而不需要裂紋擴展。當電池內(nèi)施加高電流密度時,這種情況可能會在泄漏電流非常高的情況下發(fā)生(圖6)。
圖片
圖 6.鋰通過固體電解質(zhì)傳播的示意圖
【小結(jié)】
最近的研究對應(yīng)變的起源以及SSBs各組成部分的應(yīng)力消除機制提供了洞察力。最重要的經(jīng)驗之一或許是,在較小的長度范圍內(nèi),鋰的強度是塊狀鋰的100多倍,因此無法放松在鋰電鍍過程中在界面上積累的應(yīng)力。這就需要通過固體電解質(zhì)釋放應(yīng)力,通常會導致失效。電池因鋰離子擴散導致電解質(zhì)破裂而失效,這是最關(guān)鍵的失效類型,也是最常研究的導致短路的失效類型。與突然短路相比,充放電循環(huán)下電池容量的降低雖然不那么明顯,但仍具有很大的危害性,這與陰極/固體電解質(zhì)界面裂紋的形成有關(guān)。這兩種失效模式都與鋰、固體電解質(zhì)和正極活性材料的長度尺度和額定力學以及它們在不斷裂的情況下耗散應(yīng)變能的能力直接相關(guān)。盡管在了解這些關(guān)鍵材料的應(yīng)力釋放方面取得了很大進展,但我們的認識仍然存在很大差距。該研究對SSBs力學進行了綜述,并為構(gòu)思和設(shè)計機械穩(wěn)健的SSBs搭建了一個總體框架,即:(i)識別和理解局部應(yīng)變的來源;(ii)理解應(yīng)變產(chǎn)生的應(yīng)力,尤其是電池界面上的應(yīng)力,以及電池材料如何應(yīng)對應(yīng)變。

image.png



會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復(fù)您~
在線留言
子洲县| 周宁县| 林甸县| 壶关县| 大悟县| 会理县| 嘉义县| 柘荣县| 临沂市| 那坡县| 石家庄市| 乌拉特后旗| 孟津县| 婺源县| 郸城县| 日照市| 江津市| 色达县| 玉门市| 镇宁| 盈江县| 安化县| 蓬溪县| 电白县| 镇赉县| 西贡区| 仁寿县| 樟树市| 陈巴尔虎旗| 杂多县| 东平县| 环江| 定陶县| 合水县| 濮阳县| 姚安县| 松原市| 石城县| 泾阳县| 宣化县| 大宁县|