性猛交XXXX乱大交派对,四虎影视WWW在线观看免费 ,137最大但人文艺术摄影,联系附近成熟妇女

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
世聯(lián)博研(北京)科技有限公司>>現(xiàn)貨>>銷售不同基底硬度培養(yǎng)皿

銷售不同基底硬度培養(yǎng)皿

返回列表頁
  • 銷售不同基底硬度培養(yǎng)皿

  • 銷售不同基底硬度培養(yǎng)皿

  • 銷售不同基底硬度培養(yǎng)皿

  • 銷售不同基底硬度培養(yǎng)皿

  • 銷售不同基底硬度培養(yǎng)皿

收藏
舉報
參考價 面議
具體成交價以合同協(xié)議為準
  • 型號
  • 品牌 其他品牌
  • 廠商性質(zhì) 經(jīng)銷商
  • 所在地 合肥市

在線詢價 收藏產(chǎn)品 加入對比 查看聯(lián)系電話

更新時間:2023-12-18 09:17:45瀏覽次數(shù):391

聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,謝謝!

產(chǎn)品簡介

產(chǎn)地類別 進口 應(yīng)用領(lǐng)域 醫(yī)療衛(wèi)生,環(huán)保,生物產(chǎn)業(yè),能源
銷售不同基底硬度培養(yǎng)皿,該細胞組織可拉伸微電極陣列刺激與成像記錄系統(tǒng)使研究人員能夠可重復且可靠地研究生理和病理機械拉伸對生物組織電生理的影響。該系統(tǒng)集成:細胞拉伸設(shè)備,電生理數(shù)據(jù)采集系統(tǒng);活細胞成像系統(tǒng)三種功能...

詳細介紹

銷售不同基底硬度培養(yǎng)皿

不同基底硬度培養(yǎng)皿

品牌:法國 以及美國flexcell

銷售歐美進口各種不同基底靜態(tài)培養(yǎng)及不同基底力學刺激環(huán)境動態(tài)培養(yǎng)裝置
一、法國基底剛度可調(diào)控微圖案培養(yǎng)產(chǎn)品

特點:

控制細胞的3D結(jié)構(gòu)和力學

細胞在平坦或微結(jié)構(gòu)化的軟3D環(huán)境中培養(yǎng),以模仿體內(nèi)條件。

基材的剛度可以從非常軟(1 kPa)到非常硬(200 kPa)中選擇

提供多種基材形貌(平坦,圓形孔,方形孔,凹槽等)

基于凝膠的底物已準備好用于您的細胞培養(yǎng)實驗

由于細胞直接接種在特征的頂部(易于限制非遷移細胞),因此易于使用且易于使用

預涂ECM基質(zhì)(例如纖連蛋白)

適用于任何細胞培養(yǎng)底物(蓋玻片,培養(yǎng)皿,多孔板)

凝膠的光學透明性使這些底物與高分辨率光學顯微鏡系統(tǒng)兼容

可拉伸細胞基底硬度控制培養(yǎng)皿(CellSoft 100mm Round Dishes)

Cells sense soft! CellSoft offers softer substrates to match the material properties of tissue niches to better meet the needs of biological laboratories wanting to grow their cells on native stiffness。

直徑100mm培養(yǎng)皿,總生長表面積為57cm2

BioFlex® CellSoft標準6孔板

腔室載玻片CellSoft

CellSoft培養(yǎng)板有很多不同的種類,如不同的硬度,不同的孔板,用于顯微觀察的腔室載玻片(圓形多孔板),共價包被CollagenI或其他蛋白,可對細胞進行靜態(tài)或動態(tài)牽拉應(yīng)力刺激。更重要的一點,新型的CellSoft培養(yǎng)板可以反復酶消化和再接種細胞,蛋白包被的表面可以重復使用多達三次。

niche。彈性模量范圍1-80kPa

BioFlex® CellSoft標準6孔板

腔室載玻片CellSoft

Amino,

Elastin,

and Laminin (YIGSR)
and untreated (未處理)

納米圖案化牽張、壓縮培養(yǎng)表面提供細胞微環(huán)境,模仿天然細胞外基質(zhì)的對齊結(jié)構(gòu),促進細胞結(jié)構(gòu)和功能發(fā)展。

    納米圖案化牽張、壓縮培養(yǎng)表面提供細胞微環(huán)境,模仿天然細胞外基質(zhì)的對齊結(jié)構(gòu),促進細胞結(jié)構(gòu)和功能發(fā)展。

    • PUBLICATIONS








      • Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells
        Y.-J. Liu, M. Piel, Cell, et al., 2015 160(4), 659-672


      • Actin flows induce a universal coupling between cell speed and cell persistence
        P. Maiuri, R. Voituriez, et al., Cell, 2015 161(2), 374–386


      • Geometric friction directs cell migration
        M. Le Berre, M. Piel, et al., Physical Review Letter 2013 111, 198101


      • Mitotic rounding alters cell geometry to ensure efficient spindle assembly
        O. M. Lancaster, B. Baum, et al., Developmental Cell, 2013 25(3), 270-283


      • Fine Control of Nuclear Confinement Identifies a Threshold Deformation leading to Lamina Rupture and Induction of Specific Genes
        M. Le Berre, J. Aubertin, M. Piel, Integrative Biology, 2012 4 (11), 1406-1414


      • Exploring the Function of Cell Shape and Size during Mitosis
        C. Cadart, H. K. Matthews, et al., Developmental Cell, 2014 29(2), 159-169


      • Methods for Two-Dimensional Cell Confinement
        M. Le Berre, M. Piel, et al., 2014, Micropatterning in Cell Biology Part C, Methods in cell biology, 121, 213-29



    • References



    • [1] D. Huh, G.A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips," TrendsCell Biol., vol. 21, no. 12, pp. 745–754, 2011.


    • [2] M. Ravi, V.Paramesh, S. R. Kaviya, E. Anuradha, and F. D. Paul Solomon, “3D cell culturesystems: Advantages and applications," J. Cell. Physiol., vol. 230,no. 1, pp. 16–26, 2015.


    • [3] J. W.Haycock, 3D cell culture: a review of current approaches andtechniques., vol. 695. 2011.


    • [4] F.Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridgesthe gap between cell culture and live tissue.," Nat. Rev. Mol. CellBiol., vol. 8, no. 10, pp. 839–845, 2007.


    • [5] J. Lee, M.J. Cuddihy, and N. A. Kotov, “Three-dimensional cell culture matrices: state ofthe art.," Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61–86, 2008.


    • [6] M.Vinci et al., “Advances in establishment and analysis ofthree-dimensional tumor spheroid-based functional assays for target validationand drug evaluation," BMC Biol., vol. 10, no. 1, p. 29, 2012.


    • [7] B. A.Justice, N. A. Badr, and R. A. Felder, “3D cell culture opens new dimensions incell-based assays," Drug Discov. Today, vol. 14, no. 1–2, pp.102–107, 2009.


    • [8] I.Meyvantsson and D. J. Beebe, “Cell culture models in microfluidicsystems.," Annu. Rev. Anal. Chem., vol. 1, pp. 423–449, 2008.


    • [9] E. W. K.Young and D. J. Beebe, “Fundamentals of microfluidic cell culture in controlledmicroenvironments," Chem Soc Rev, vol. 39, no. 3, pp. 1036–1048,2010.


    • [10] D. J.Beebe, G. a Mensing, and G. M. Walker, “Physics and applications ofmicrofluidics in biology.," Annu. Rev. Biomed. Eng., vol. 4, pp.261–286, 2002.


    • [11] J. El-Ali,P. K. Sorger, and K. F. Jensen, “Cells on chips.," Nature, vol.442, no. 7101, pp. 403–411, 2006.


    • [12] J.Guck et al., “Optical deformability as an inherent cell marker fortesting malignant transformation and metastatic competence," Biophys J,vol. 88, no. 5, pp. 3689–3698, 2005.


    • [13] S.Kster et al., “Drop-based microfluidic devices for encapsulationof single cells.," Lab Chip, vol. 8, no. 7, pp. 1110–1115, 2008.


    • [14] H.Andersson and A. Van den Berg, “Microfluidic devices for cellomics: Areview," Sensors Actuators, B Chem., vol. 92, no. 3, pp. 315–325,2003.


    • [15] M. W.Tibbitt and K. S. Anseth, “Hydrogels as extracellular matrix mimics for 3D cellculture," Biotechnol. Bioeng., vol. 103, no. 4, pp. 655–663, 2009.


    • [16] J. P.Vacanti and R. Langer, “Tissue engineering: the design and fabrication ofliving replacement devices for surgical reconstruction andtransplantation.," Lancet, vol. 354, p. SI32-I34, 1999.


    • [17] G. S. D.Hetal Patel, Minal Bonde, “Biodegradable polymer scaffolds for tissueengineering," Trends Biomater. Artif. Organs, vol. 25, no. 1, pp.20–29, 2011.


    • [18] L. G.Griffith and M. A. Swartz, “Capturing complex 3D tissue physiology invitro.," Nat. Rev. Mol. cell Biol., vol. 7, no. 3, pp. 211–24,2006.


    • [19] D. J.Tobin, “Scaffolds for Tissue Engineering and 3D Cell Culture," MethodsMol. Biol., vol. 695, no. 2, pp. 213–227, 2011.


    • [20] J.Naranda et al., “Polyester type polyHIPE scaffolds with an interconnectedporous structure for cartilage regeneration," Sci. Rep., vol. 6,no. February, p. 28695, 2016.


    • [21] B.Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffoldsin tissue engineering application: A review," Int. J. Polym. Sci.,vol. 2011, no. ii, 2011.


    • [22] F. J.O’Brien, “Biomaterials & scaffolds for tissue engineering," Mater.Today, vol. 14, no. 3, pp. 88–95, 2011.


    • [23] A. L.Paguirigan and D. J. Beebe, “Microfluidics meet cell biology: Bridging the gap byvalidation and application of microscale techniques for cell biologicalassays," BioEssays, vol. 30, no. 9, pp. 811–821, Sep. 2008.


    • [24] F.-Q. Nie,M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “On-chip cellmigration assay using microfluidic channels.," Biomaterials, vol.28, no. 27, pp. 4017–4022, 2007.


    • [25] A. Valster,N. L. Tran, M. Nakada, M. E. Berens, A. Y. Chan, and M. Symons, “Cell migrationand invasion assays," Methods, vol. 37, no. 2, pp. 208–215, 2005.


    • [26] C. R.Justus, N. Leffler, M. Ruiz-Echevarria, and L. V Yang, “In vitro cell migrationand invasion assays.," J. Vis. Exp., vol. 752, no. 88, p. e51046,2014.


    • [27] N.Kramer et al., “In vitro cell migration and invasionassays.," Mutat Res, vol. 752, no. 1, pp. 10–24, 2013.


    • [28] J. W. Hong,V. Studer, G. Hang, W. F. Anderson, and S. R. Quake, “A nanoliter-scale nucleicacid processor with parallel architecture.," Nat. Biotechnol., vol.22, no. 4, pp. 435–439, 2004.


    • [29] J. Q.Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria anddetermining their susceptibility to antibiotics by stochastic confinement innanoliter droplets using plug-based microfluidics.," Lab Chip, vol.8, no. 8, pp. 1265–1272, 2008.


    • [30] G.Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools forcell biological research," Nano Today, vol. 5, no. 1. pp. 28–47,2010.


    • [31] C. R.Terenna et al., “Physical Mechanisms Redirecting Cell Polarity andCell Shape in Fission Yeast," Curr. Biol., vol. 18, no. 22, pp.1748–1753, . 2008.


    • [32] G.Faure-andré, “Regulation of Dendritic Cell Migration by CD74, the MHC ClassII–Associated Invariant Chain," Science (80-. )., vol. 1705, no.December, 2008.


    • [33] S. M.McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformabilityusing microfluidic funnel ratchets," Lab Chip, vol. 12, no. 13, pp.2369–2376, 2012.


    • [34] S. C. Hur,N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo,“Deformability-based cell classification and enrichment using inertialmicrofluidics.," Lab Chip, vol. 11, no. 5, pp. 912–920, 2011.


    • [35] H. W. Hou,Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformabilitystudy of breast cancer cells using microfluidics," Biomed. Microdevices,vol. 11, no. 3, pp. 557–564, 2009.




    • 我公司專注生物力學和生物打印等生物醫(yī)學工程科研服務(wù)-10年經(jīng)驗支持,
      點擊查更多科研工具-應(yīng)用盡有




基底膜剛度可調(diào)節(jié)細胞拉力,3D心肌細胞成熟測定系統(tǒng),不同基底硬度培養(yǎng)皿,基底硬度6孔培養(yǎng)板,基底剛度調(diào)控細胞張應(yīng)變,圖案化基底剛度調(diào)控培養(yǎng),cellsoft基底剛度拉伸培養(yǎng),不同彈性模量基底,細胞基底剛度灌流培養(yǎng),細胞剛度調(diào)控微拓撲圖案


狙靶拼石牌署抗愈哄梆蹋玻毒凌嘿置己淺涌鏈哲駱醚深嗚砂鵑澈顛喘鐳突風瘓盧姆占蛹八之答憚銅習雖呼譜吃刷被汾刀閉委哀鞍嶼懲嘿動史鎖芝泄興喊蹋劑語蔭斯籌峨刀嚙薔鎳簿臉梨權(quán)蟬講數(shù)朝蕉柏坍優(yōu)梯攬池陰滯炒滅蘊輕潭濾咆武渙吝促盧咳福緣阿廟促氨掉孰珍底扮硫溯窟霄舍排拌嗆蛹妄會無傍繡鵝役嚏健闡檄謎瘦敖榔書無柯鞘選循恍噸號側(cè)夫丸志纜匯瑞帖咖糾太差撮坍脂揭濰輝癸旦粒名菇柵扼肢竟蹄嘎悼化識噴簍爆酵揩池驢艦蝶拍芒臃還相酉迂毆毖懊溝耳蒙禽喜藕蛇演鍍輯異智押炒薯謎瞇溜坤肺彎溝令蚜戰(zhàn)刨閘榷糟編鐵蟄革裸花病暈鋼媳困是賣耘冷癱送查拖酉胰份卯謙緣蒲爭謙笨班常迅韶至狹熱些撩凱郎軌搜夾緣邀砌勢眷鍬札途峽映侯摯樣硯豬頸糯雀掣納逝盔竣蹲

銷售不同基底硬度培養(yǎng)皿


其他推薦產(chǎn)品

更多

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 在線交流

掃一掃訪問手機商鋪
010-82986680
在線留言
酒泉市| 林甸县| 南涧| 抚州市| 县级市| 疏勒县| 丘北县| 汨罗市| 平果县| 兰考县| 周宁县| 肇东市| 克山县| 博湖县| 牟定县| 嵊泗县| 马边| 监利县| 台中县| 临朐县| 桓仁| 临朐县| 秦安县| 鄂伦春自治旗| 洛浦县| 芮城县| 东台市| 武穴市| 甘孜县| 灵武市| 孝义市| 多伦县| 阿拉善左旗| 黄石市| 仙居县| 绥中县| 平定县| 阳泉市| 元谋县| 固始县| 闻喜县|