首頁 >> 供求商機(jī)
貨物所在地:河北保定市
更新時間:2024-06-03 09:26:54
瀏覽次數(shù):61
在線詢價收藏產(chǎn)品( 聯(lián)系我們,請說明是在 化工儀器網(wǎng) 上看到的信息,謝謝!)
二代測序(NGS)以高通量、可擴(kuò)展和快速測序的優(yōu)點(diǎn),成為了生命科學(xué)領(lǐng)域基因組研究的 常用工具。借助NGS技術(shù),科研人員能夠?qū)ι?物系統(tǒng)開展廣泛的研究和應(yīng)用。然而,關(guān)于非 模式物種的研究目前還存在諸多問題(例如: 基因組數(shù)據(jù)缺失、注釋不完整、數(shù)據(jù)組裝難度大、 全基因組測序成本高等),這些問題限制了NGS 在系統(tǒng)發(fā)育學(xué)和群體遺傳學(xué)領(lǐng)域的廣泛應(yīng)用。
靶向捕獲測序是一種采用靶向捕獲探針對特定 的基因組區(qū)域進(jìn)行選擇性地富集,再進(jìn)行測序的技術(shù)。該技術(shù)可將測序工作集中在樣品的特 定基因區(qū)域,去除冗余數(shù)據(jù)的干擾,同時降低 測序成本及基因組組裝的復(fù)雜性,進(jìn)而提高 NGS數(shù)據(jù)的利用率,促進(jìn)項(xiàng)目規(guī)模的擴(kuò)大。因 此,靶向捕獲測序技術(shù)是系統(tǒng)發(fā)育學(xué)和群體遺 傳學(xué)研究最有前景的技術(shù)之一。 我們可為您提供靶向捕獲測序與分析全流程技術(shù)服務(wù)和個性化數(shù)據(jù)分析,及基于靶向捕獲測序技術(shù)的基因組整體解決方案。歡迎咨詢!
實(shí)驗(yàn)技術(shù)流程:
生信分析流程:
技術(shù)優(yōu)勢:
應(yīng)用領(lǐng)域:
常用探針集和靶向捕獲試劑盒:
參考文獻(xiàn):
Johnson MG, Pokorny L, Dodsworth S, et al. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Syst Biol. 2019;68(4):594-606.Singhal S, Grundler M, Colli G, et al. Squamate Conserved Loci (SqCL): A unified set of conserved loci for phylogenomics and population genetics of squamate reptiles. Mol Ecol Resour. 2017;17(6):e12-e24.
Shaffer HB, McCartney-Melstad E, Near TJ, et al. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol Phylogenet Evol. 2017;115:7-15.
Dodsworth S, Pokorny L, Johnson MG, et al. Hyb-Seq for Flowering Plant Systematics. Trends Plant Sci. 2019;24(10):887-891.
Hale H, Gardner EM, Viruel J, et al. Strategies for reducing per-sample costs in target capture sequencing for phylogenomics and population genomics in plants. Appl Plant Sci. 2020;8(4):e11337.
Slimp M, Williams LD, Hale H, et al. On the potential of Angiosperms353 for population genomic studies. Appl Plant Sci. 2021;9(7):10.1002/aps3.11419.
McLay TGB, Birch JL, Gunn BF, et al. New targets acquired: Improving locus recovery from the Angiosperms353 probe set. Appl Plant Sci. 2021;9(7):10.1002/aps3.11420.
Nauheimer L, Weigner N, Joyce E, et al. HybPhaser: A workflow for the detection and phasing of hybrids in target capture data sets. Appl Plant Sci. 2021;9(7):10.1002/aps3.11441.
McDonnell AJ, Baker WJ, Dodsworth S, et al. Exploring Angiosperms353: Developing and applying a universal toolkit for flowering plant phylogenomics. Appl Plant Sci. 2021;9(7):10.1002/aps3.11443.
Baker WJ, Dodsworth S, Forest F, et al. Exploring Angiosperms353: An open, community toolkit for collaborative phylogenomic research on flowering plants. Am J Bot. 2021;108(7):1059-1065.
Faircloth BC, Branstetter MG, White ND, et al. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol Ecol Resour. 2015;15(3):489-501.
McCormack JE, Tsai WL, Faircloth BC. Sequence capture of ultraconserved elements from bird museum specimens. Mol Ecol Resour. 2016;16(5):1189-203.
Starrett J, Derkarabetian S, Hedin M, et al. High phylogenetic utility of an ultraconserved element probe set designed for Arachnida. Mol Ecol Resour. 2017;17(4):812-823.
Bejerano G, Pheasant M, Makunin I, et al. Ultra-conserved elements in the human genome. Science. 2004;304(5675):1321-1325. doi:10.1126/science.1098119.
Miller W, Rosenbloom K, Hardison RC, et al. 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Res. 2007;17(12):1797-808.
Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15(8):1034-50.
Faircloth BC, McCormack JE, Crawford NG, et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012;61(5):717-26.
Faircloth BC, Sorenson L, Santini F, et al. A Phylogenomic Perspective on the Radiation of Ray-Finned Fishes Based upon Targeted Sequencing of Ultraconserved Elements (UCEs). PLoS One. 2013;8(6):e65923.
McCormack JE, Faircloth BC, Crawford NG, et al. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res. 2012;22(4):746-54.
Smith BT, Harvey MG, Faircloth BC, et al. Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales. Syst Biol. 2014;63(1):83-95.
Crawford NG, Faircloth BC, McCormack JE, et al. More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett. 2012;8(5):783-6.
McCormack JE, Harvey MG, Faircloth BC, et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS One. 2013;8(1):e54848.
Hutter CR, Cobb KA, Portik DM, et al. FrogCap: A modular sequence capture probe-set for phylogenomics and population genetics for all frogs, assessed across multiple phylogenetic scales. Molecular Ecology Resources. 2022;22:1100-1119.
Murchie TJ, Kuch M, Duggan AT, et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set.Quaternary Research. 2021;99:305-328.
Eserman LA, Thomas SK, Coffey EED, et al. Target sequence capture in orchids: Developing a kit to sequence hundreds of single-copy loci. Applications in Plant Sciences. 2021;9(7):e11416.
Guitor AK, Raphenya AR, Klunk J, et al. Capturing the Resistome: a Targeted Capture Method To Reveal Antibiotic Resistance Determinants in Metagenomes. Antimicrobial Agents and Chemotherapy. 2019;64(1):e01324-19.
Forth JH, Forth LF, King J, et al. A Deep-Sequencing Workflow for the Fast and Efficient Generation of High-Quality African Swine Fever Virus Whole-Genome Sequences. Viruses. 2019;11(9):846.
Tillmar A, Sturk-Andreaggi K, Daniels-Higginbotham J, et al. The FORCE Panel: An All-in-One SNP Marker Set for Confirming Investigative Genetic Genealogy Leads and for General Forensic Applications. Genes. 2021;12(12):1968.
(空格分隔,最多3個,單個標(biāo)簽最多10個字符)