詳細(xì)介紹
WT1 腎母細(xì)胞瘤(鼠單克隆抗體)
廣州健侖生物科技有限公司
WT1是位于染色體11p13的抑癌基因,可識(shí)別間皮細(xì)胞增生、惡性間皮瘤、卵巢囊腺癌、性腺母細(xì)胞瘤、腎母細(xì)胞瘤及結(jié)締組織增生性小圓細(xì)胞腫瘤??捎糜谘芯看俳Y(jié)締組織增生的小圓細(xì)胞瘤和Ewing肉瘤及原始神經(jīng)外胚層腫瘤。
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲(chóng)病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢
WT1 腎母細(xì)胞瘤(鼠單克隆抗體)
【產(chǎn)品介紹】
細(xì)胞定位:細(xì)胞核
克隆號(hào):6F-H2
同型:IgG
適用組織:石蠟/冰凍
陽(yáng)性對(duì)照:間皮瘤
抗原修復(fù):熱修復(fù)(EDTA)
抗體孵育時(shí)間:30-60min
產(chǎn)品編號(hào) | 抗體名稱 | 克隆型別 |
OB234 | T-bet(T盒子轉(zhuǎn)錄因子) | MRQ-46 |
OB235 | TCL1試劑(T細(xì)胞淋巴瘤1) | MRQ-7 |
OB236 | TdT(末端脫氧核苷酸轉(zhuǎn)移酶) | polyclonal |
OB237 | TFE3試劑(轉(zhuǎn)錄因子E3) | MRQ-37 |
OB238 | Thyroglobulin(甲狀腺球蛋白) | DAK-Tg6 |
OB239 | Thyroglobulin(甲狀腺球蛋白) | 2H11+6E1 |
OB240 | TIA-1(T細(xì)胞胞漿內(nèi)抗原) | 2G9A10F5 |
OB241 | Topo Ⅱ α(拓?fù)洚悩?gòu)酶Ⅱα) | SD50 |
OB242 | TPO(甲狀腺過(guò)氧化物酶) | AC25 |
OB243 | TS(胸苷酸合成酶) | TS106 |
OB244 | TSH 甲狀腺刺激激素 | polyclonal |
OB245 | TTF-1(甲狀腺轉(zhuǎn)錄因子1) | 8G7G3/1 |
OB246 | TTF-1(甲狀腺轉(zhuǎn)錄因子1) | SPT24 |
OB247 | Tyrosinase(酪氨酸酶) | T311 |
OB248 | Uroplakin III試劑(尿溶蛋白III) | SP73 |
OB249 | VEGF(血管內(nèi)皮生長(zhǎng)因子) | VG1 |
OB250 | VEGF(血管內(nèi)皮生長(zhǎng)因子) | polyclonal |
OB251 | Villin(絨毛蛋白) | CWWB1 |
OB252 | Vimentin(波形蛋白) | V9 |
OB253 | Vimentin(波形蛋白) | SP20 |
OB254 | WT1(腎母細(xì)胞瘤) | EP122 |
OB255 | ZAP-70試劑(Zeta鏈相關(guān)蛋白激酶70) | 2F3.2 |
WT1
想了解更多的產(chǎn)品及服務(wù)請(qǐng)掃描下方二維碼:
【公司名稱】 廣州健侖生物科技有限公司
【市場(chǎng)部】 歐
【】
【騰訊 】
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-103室
在這些信息的基礎(chǔ)上,我們可以同步細(xì)胞動(dòng)態(tài),在引入轉(zhuǎn)基因時(shí)讓大多數(shù)細(xì)胞處于抗原抗體狀態(tài)。已經(jīng)有前期工作表明,重編程動(dòng)態(tài)受到一些限速步驟的調(diào)控。比如,去除組蛋白乙?;囊粋€(gè)抑制子,可以使體外重編程的效率達(dá)到幾乎100%。此外,引入OSKM也會(huì)刺激甲基化等細(xì)胞過(guò)程,以維持內(nèi)穩(wěn)態(tài)。對(duì)于研究這些過(guò)程的動(dòng)態(tài)而言,定量技術(shù)將特別有優(yōu)勢(shì)。FACS和拉曼光譜才剛開(kāi)始用于細(xì)胞重編程的定量研究,就已經(jīng)表現(xiàn)出了很大的潛力。
細(xì)胞重編程受到公眾關(guān)注,主要是因?yàn)樗诩膊∧M和醫(yī)療保健中的應(yīng)用。神經(jīng)退行性疾病的患者特別能從這一技術(shù)中獲益,因?yàn)樯缮窠?jīng)元的iPS方案要優(yōu)于其他細(xì)胞類型,而且患者神經(jīng)元通常很難獲取。目前,細(xì)胞重編程技術(shù)研究特定基因組突變引起的疾病,因?yàn)橹鼐幊虝?huì)重設(shè)表觀基因組。盡管有證據(jù)表明,iPS技術(shù)也能用來(lái)研究復(fù)雜基因組改變引起的疾病,但目前的模型一般不足以研究異常細(xì)胞網(wǎng)絡(luò)或動(dòng)態(tài)引發(fā)的疾病。
Based on this information, we can synchronize cellular dynamics, allowing most cells to be in an antigen-antibody state upon introduction of the transgene. Preliminary work has shown that reprogramming is dynamically limited by some rate-limiting steps. For example, removing a suppressor of histone acetylation can make reprogramming nearly 100% efficient in vitro. In addition, the introduction of OSKM also stimulates cellular processes such as methylation to maintain homeostasis. Quantitative techniques will be particularly advantageous for studying the dynamics of these processes. FACS and Raman spectroscopy have just begun to be used in quantitative studies of cell reprogramming and have shown great potential.
Cell reprogramming has received public attention primarily because of its use in disease simulation and healthcare. In particular, patients with neurodegenerative diseases benefit from this technique because the iPS regimen that produces neurons is superior to other cell types and is often difficult to obtain in patient neurons. Currently, cell reprogramming is best suited to study diseases caused by specific genomic mutations because reprogramming resets the epigenome. Although there is evidence that iPS technology can also be used to study diseases caused by complex genome changes, current models are generally not adequate for studying abnormal cell networks or dynamically induced diseases.