應用領域 | 電子,交通,冶金,煙草,汽車 |
---|
產品簡介
詳細介紹
溫度傳感器,常用的非接觸式測溫儀表基于黑體輻射的基本定律,稱為輻射測溫儀表。輻射測溫法包括亮度法(見光學高溫計)、輻射法(見輻射高溫計)和比色法(見比色溫度計)。各類輻射測溫方法只能測出對應的光度溫度、輻射溫度或比色溫度。只有對黑體(吸收全部輻射并不反射光的物體)所測溫度才是真實溫度。如欲測定物體的真實溫度,則必須進行材料表面發(fā)射率的修正。而材料表面發(fā)射率不僅取決于溫度和波長,而且還與表面狀態(tài)、涂膜和微觀組織等有關,因此很難精確測量。在自動化生產中往往需要利用輻射測溫法來測量或控制某些物體的表面溫度,如冶金中的鋼帶軋制溫度、軋輥溫度、鍛件溫度和各種熔融金屬在冶煉爐或坩堝中的溫度。在這些具體情況下,物體表面發(fā)射率的測量是相當困難的。對于固體表面溫度自動測量和控制,可以采用附加的反射鏡使與被測表面一起組成黑體空腔。附加輻射的影響能提高被測表面的有效輻射和有效發(fā)射系數。利用有效發(fā)射系數通過儀表對實測溫度進行相應的修正,終可得到被測表面的真實溫度。為典型的附加反射鏡是半球反射鏡。球中心附近被測表面的漫射輻射能受半球鏡反射回到表面而形成附加輻射,從而提高有效發(fā)射系數式中ε為材料表面發(fā)射率,ρ為反射鏡的反射率。至于氣體和液體介質真實溫度的輻射測量,則可以用插入耐熱材料管至一定深度以形成黑體空腔的方法。通過計算求出與介質達到熱平衡后的圓筒空腔的有效發(fā)射系數。在自動測量和控制中就可以用此值對所測腔底溫度(即介質溫度)進行修正而得到介質的真實溫度。
非接觸測溫優(yōu)點:測量上限不受感溫元件耐溫程度的限制,因而對可測溫度原則上沒有限制。對于1800℃以上的高溫,主要采用非接觸測溫方法。
隨著紅外技術的發(fā)展,輻射測溫溫度傳感器逐漸由可見光向紅外線擴展,700℃以下直至常溫都已采用,且分辨率很高。
巴魯夫現(xiàn)貨紅外溫度傳感器熱傳感器是利用輻射熱效應,使探測器件接收輻射能后引起溫度升高,進而使傳感器中一欄與溫度的性能發(fā)生變化。檢測其中某一性能的變化,便可探測出輻射。紅外線
紅外線是一種人眼看不見的光線,但事實上它和其它任何光線一樣,也是一種客觀存在的物質。任何物體只要它的溫度高于熱力學零度,就會有紅外線向周圍輻射。紅外線是位于可見光中紅色光以外的光線,故稱紅外線。它的波長范圍大致在0.75~100μm的頻譜范圍之內。
巴魯夫現(xiàn)貨紅外溫度傳感器輻射
紅外輻射的物理本質是熱輻射。物體的溫度越高,輻射出來的紅外線越多,紅外輻射的能量就越強。研究發(fā)現(xiàn),太陽光譜的各種單色光的熱效應從紫色光到紅色光是逐漸增大的,而且大的熱效應出現(xiàn)在紅外輻射的頻率范圍之內,因此人們又將紅外輻射稱為熱輻射或者熱射線。
巴魯夫現(xiàn)貨紅外溫度傳感器原理
熱傳感器是利用輻射熱效應,使探測器件接收輻射能后引起溫度升高,進而使傳感器中一欄與溫度的性能發(fā)生變化。檢測其中某一性能的變化,便可探測出輻射。多數情況下是通過賽貝克效應來探測輻射的,當器件接收輻射后,引起一非電量的物理變化,也可通過適當變化變?yōu)殡娏亢筮M行測量。