詳細(xì)介紹
簡單介紹新一代無標(biāo)記酶標(biāo)儀 BYOSENS LYTE96*臺便攜式無標(biāo)記酶標(biāo)儀 該BYOSENS LYTE96*臺便攜式無標(biāo)記酶標(biāo)儀是*款便攜式無標(biāo)記酶標(biāo)儀。根據(jù)康寧Epic系統(tǒng)它被設(shè)計(jì)為讀出96孔板,并進(jìn)行了廣泛的細(xì)胞化驗(yàn)。結(jié)合無線連接和集成電池結(jié)合,lyte96的緊湊的結(jié)構(gòu)使得它*移動并易于在液體處理系統(tǒng)集成。 The next generation label-free reader BYOSENS LYTE96 THE
*臺便攜式無標(biāo)記酶標(biāo)儀,BYOSENS LYTE96 PORTABLE LABEL-FREEMICROPLATE READER的詳細(xì)介紹
BYOSENS LYTE96*臺便攜式無標(biāo)記酶標(biāo)儀(便攜微孔板檢測器)
LYTE96便攜式無標(biāo)記酶標(biāo)儀(便攜微孔板檢測器)是基于康寧Epic系統(tǒng)設(shè)計(jì)的,可進(jìn)行一系列細(xì)胞內(nèi)試驗(yàn)的96孔微孔板讀出設(shè)備。lyte96將無線連接和集成電池結(jié)合放置到一個緊湊的結(jié)構(gòu)中,使得它方便移動和易于整合進(jìn)液體處理系統(tǒng)。主要是對系列廣泛的生物反應(yīng)進(jìn)行檢測,如信號轉(zhuǎn)導(dǎo)、細(xì)胞凋亡、細(xì)胞毒素,貼壁、增殖和擴(kuò)散等。
lyte96無標(biāo)記便攜生物傳感器的工作原理是基于折射波導(dǎo)光柵光學(xué)生物傳感器。傳感器結(jié)構(gòu)由一個三層系統(tǒng):玻璃基板、薄膜光波導(dǎo)薄膜與光柵結(jié)構(gòu),和細(xì)胞/生物分子層。當(dāng)寬譜帶光照射時,生物傳感器反映光的特定波長是接近傳感器表面折射率的靈敏函數(shù)。通過 Epic系統(tǒng)測量細(xì)胞內(nèi)的粘合物事件或細(xì)胞內(nèi)蛋白質(zhì)運(yùn)動引起反射光的波長偏移。形成一系列波長偏移、波長、強(qiáng)度、時間之間的函數(shù)來進(jìn)行分析。
lyte96無標(biāo)記便攜生物傳感器的優(yōu)勢:
移動性: lyte96創(chuàng)新設(shè)計(jì)之處是給使用者帶來了極大的靈活性。緊湊的結(jié)構(gòu)結(jié)合了無線連接和集成的電池使lyte96方便移動。這使得它對于研究人員和開發(fā)人員來說成為一個*的分析工具。
易用性: lyte96簡化了研發(fā)實(shí)驗(yàn)室中的過程。實(shí)驗(yàn)開始時不需要復(fù)雜的預(yù)置,直觀輔助的軟件保證了高水平的易用性。由于技術(shù)體系,lyte96幾乎是免費(fèi)維護(hù)。
數(shù)據(jù)分析:根據(jù)已建立的康寧Epic系統(tǒng),高敏性的lyte96可進(jìn)行寬光譜的細(xì)胞內(nèi)試驗(yàn),從開始試驗(yàn)到幾天的時間都可以提供實(shí)時數(shù)據(jù)以便研究。
圖1. 萊特96無標(biāo)記便攜生物傳感器
圖2.測量原理示意圖
例1:在增殖試驗(yàn)中,用lyte96實(shí)時監(jiān)測細(xì)胞數(shù)量,發(fā)現(xiàn)細(xì)胞數(shù)目和傳感器表面的質(zhì)量是成正比的。微孔板和lyte96放置在加濕的培養(yǎng)箱內(nèi)通過藍(lán)牙無線連接電腦。經(jīng)典增殖試驗(yàn)中,A431細(xì)胞加入到孔中,記錄37?C的細(xì)胞生長。
例2:動態(tài)質(zhì)量再分配(DMR)的測定
像許多其他的信號檢測,GPCR測定動態(tài)質(zhì)量再分配過程中(DMR)是由lyte96無標(biāo)記傳感器測定的。和A431細(xì)胞緩激肽試驗(yàn)一樣,這個試驗(yàn)是在室溫下進(jìn)行。得到的EC50為0.45 nm,這類似于從文獻(xiàn)的結(jié)果。
參考文獻(xiàn):
Nazirizadeh, Y. et al. Intensity interrogation near cutoff resonance for label-free cellular profiling. Sci. Rep. 6, 24685 (2016).
French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733 (2016).
Camp, N. D. et al. Dynamic mass redistribution reveals diverging importance of PDZ-ligands for G protein-coupled receptor pharmacodynamics. Pharmacological. Research, 105, 13-21 (2016).
Klein, A. B., Nittegaard-Nielsen, M., Christensen, J. T., Al-Khawaja, A., & Wellendorph, P. Demonstration of the dynamic mass redistribution label-free technology as a useful cell-based pharmacological assay for endogenously expressed GABAA receptors. Med. Chem. Commun., 7, 426–432 (2016).
Klepac, K. et al. The Gq signalling pathway inhibits brown and beige adipose tissue.Nat. Commun. 7, 10895 (2016).
Hamamoto, A., Kobayashi, Y. & Saito, Y. Identification of amino acids that are selectively involved in Gi/o activation by rat melanin-concentrating hormone receptor 1. Cell. Signal. 27, 818–827 (2015).
Navarro, G. et al. Orexin – Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine. J. Neurosci. 35, 6639–6653 (2015).
Wang, J. et al. RSC Advances danshen using a label-free cell phenotypic assay. RSC Adv. 5, 25768–25776 (2015).
Rex, E. B. et al. Phenotypic Approaches to Identify Inhibitors of B Cell Activation. J. Biomol. Screen. 20, 876–886 (2015).
Vinals, X. et al. Cognitive Impairment Induced by Delta9- tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB 1 and Serotonin 5-HT 2A Receptors. PLOS Biol., e1002194 (2015).
Fjellstr?m, O. et al. Novel Zn 2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents. PLoS One, 0145849 (2015).
Shridhar, N. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).
Marada, S. et al. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLOS Genet., 1005473 (2015).
Brust, T. F., Hayes, M. P., Roman, D. L. & Watts, V. J. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling. Biochem Pharmacol. 93, 85–91 (2015).
Camp, N. D. et al. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules. Cell Discov. 1, 15011 (2015).
Beckert, U. et al. Biochemical and Biophysical Research Communications cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem. Biophys. Res. Commun. 451, 497–502 (2014).
Otte, M. et al. CXCL14 is no direct modulator of CXCR4. FEBS Lett. 588, 4769–4775 (2014).
Liebscher, I. et al. A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133. Cell Rep. 9, 2018–2026 (2014).
Fang, Y. Label-Free Cell Phenotypic Drug Discovery. Comb. Chem. High Throughput Screen. 17, 566–578 (2014).
Fang, Y. Label-free drug discovery. Front. Pharmacol. 5, 1–8 (2014).
Febles, N. K., Ferrie, A. M. & Fang, Y. Label-Free Single Cell Kinetics of the Invasion of Spheroidal Colon Cancer Cells through 3D Matrigel. Anal. Chem. 86, 8842–8849 (2014).
Lee, M. Y. et al. A Comparison of Assay Performance Between the Calcium Mobilization and the Dynamic Mass Redistribution Technologies for the Human Urotensin Receptor. Assay Drug Dev. Technol. 12, 361–368 (2014).
Balenga, N. A. et al. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br. J. Pharmacol. 171, 5387–5406 (2014).
Carter, R. L. et al. Dynamic mass redistribution analysis of endogenous b -adrenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharma. Res. Per.2, 1–16 (2014).
Teutsch, C. et al. Detection of free fatty acid receptor 1 expression?: the critical role of negative and positive controls. Diabetologia 57, 776–780 (2014).
Meister, J. et al. The G Protein-coupled Receptor P2Y 14 Influences Insulin Release and Smooth Muscle Function in Mice. J. Biol. Chem. 289, 23353–23366 (2014).
Andradas, C. et al. Targeting CB 2 -GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. J. Biol. Chem. 289, 21960–21972 (2014).
Schmitz, J. et al. Dualsteric Muscarinic Antagonists ? Orthosteric Binding Pose Controls Allosteric Subtype Selectivity. J. Med. Chem. 57, 6739–6750 (2014).
Mackenzie, A. E. et al. The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35. Mol. Pharmacol.85, 91–104 (2014).
Chen, X. et al. Rational Design of Partial Agonists for the Muscarinic M1 Acetylcholine Receptor. J. Med. Chem. 58, 560–576 (2014).
Ferrie, A. M., Zaytseva, N. & Fang, Y. Divergent Label-free Cell Phenotypic Overexpressed b2-Adrenergic Receptors. Sci. Rep. 4, 3828 (2014).
Orgovan, N. et al. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci. Rep. 4, 4034 (2014).
Sun, H. et al. Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci. Rep. 4, 4934 (2014).
Sundstr?m, L., Greasley, P. J., Engberg, S., Wallander, M. & Ryberg, E. Succinate receptor GPR91 , a G ai coupled receptor that increases intracellular calcium concentrations through PLC b. FEBS Lett. 587, 2399–2404 (2013).
Fang, Y. Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J. Pharmacol. Toxicol. Methods 67, 69–81 (2013).
Ahmedat, A. S. et al. Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine / paracrine endothelinergic system. Br. J. Pharmacol. 168, 471–487 (2013).
Morse, M., Sun, H., Tran, E., Levenson, R. & Fang, Y. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol. Toxicol. 14, 1–18 (2013).
Online, V. A., Ferrie, A. M., Wang, C. & Fang, Y. Integrative Biology identifies an intracellular signalling wave mediated through the b2-adrenergic receptor. Integr. Biol. 5, 1253–1261 (2013).
Christiansen, E. et al. Discovery of a Potent and Selective Free Fatty Acid Receptor 1 Agonist with Low Lipophilicity and High Oral Bioavailability. J. Med. Chem. 56, 982–992 (2013).
Hennig, D. et al. Novel Insights Into Appropriate Encapsulation Methods for Bioactive Compounds Into Polymers: A Study With Peptides and HDAC Inhibitors.Macromol. Biosci. 1–12 (2013).
Deng, H., Sun, H. & Fang, Y. Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J. Pharmacol. Toxicol. Methods 68, 1–24 (2013).
Zaytseva, N. et al. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. Sens. Actuators B Chem. 1–17 (2013).
Zhao, H., French, J. B., Fang, Y. & Benkovic, S. J. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem. Commun. (Camb). 49, 1–17 (2013).
Cho, Y. & Baldán, A. Quest for New Biomarkers in Atherosclerosis. Mo. Med. 110, 325–330 (2013).
Hennen, S. et al. Decoding Signaling and Function of the Orphan G Protein– Coupled Receptor GPR17 with a Small-Molecule Agonist. Sci. Signal. 6, 1–33 (2013).
Deng, H. & Fang, Y. The Three Catecholics Benserazide, Catechol and Pyrogallol are GPR35 Agonists. Pharmaceuticals 6, 500–509 (2013).
Deng, H., Wang, C. & Fang, Y. Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv. 3, 10370–10378 (2013).
Schrage, R. et al. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br. J. Pharmacol. 169, 357–370 (2013)