性猛交XXXX乱大交派对,四虎影视WWW在线观看免费 ,137最大但人文艺术摄影,联系附近成熟妇女

您好, 歡迎來到化工儀器網(wǎng)

| 注冊| 產(chǎn)品展廳| 收藏該商鋪

400-630-7761

technology

首頁   >>   技術文章   >>   【顯微課堂】生產(chǎn)過程中電池顆粒檢測

徠卡顯微系統(tǒng)(上海)貿(mào)易...

立即詢價

您提交后,專屬客服將第一時間為您服務

【顯微課堂】生產(chǎn)過程中電池顆粒檢測

閱讀:488      發(fā)布時間:2024-5-28
分享:

改進鋰離子電池的檢驗和清潔度分析,

以實現(xiàn)更好的性能和可靠性

【顯微課堂】生產(chǎn)過程中電池顆粒檢測


本文介紹了如何利用光學顯微鏡快速、可靠且經(jīng)濟有效地進行電池顆粒檢測與分析。電池制造可能需要進行清潔度分析,分析顆粒污染情況。不同類型和大小的顆粒具有潛在的破壞性。它們的存在可能導致電池性能不佳和可靠性降低,以及存在安全風險。為了有效地進行根本原因分析,無需使用電子顯微鏡,可以采用結(jié)合光學顯微鏡和激光光譜學的2合1解決方案



生產(chǎn)過程中的電池顆粒檢測

鋰離子電池(Li-ion)的生產(chǎn)包括多個步驟:電極制造、電池組裝、電池加工和電池激活(參見圖1)。顆粒污染主要來源于電極生產(chǎn)過程,由于材料的切割和沖壓。在電池生產(chǎn)的每個步驟中,都需要控制顆粒污染,這需要使用檢測、識別和分析方法。因此,通常將清潔度分析作為質(zhì)量控制(QC)和故障分析(FA)的一部分。在生產(chǎn)線上,顆粒捕集器用于收集特定生產(chǎn)步驟中產(chǎn)生的顆粒,并有助于監(jiān)測整體顆粒污染的數(shù)量。

【顯微課堂】生產(chǎn)過程中電池顆粒檢測

圖1:圖表展示了電池生產(chǎn)中電極制造、電池組裝和電池加工的各個環(huán)節(jié)。顆粒檢測通常涉及電極制造的所有步驟,甚至電池組裝的電氣接觸/焊接步驟。即使在電池組裝的電池殼插入步驟(將電極-隔膜堆棧插入特殊外殼中,例如金屬圓筒或塑料包),也必須驗證外殼部件沒有關鍵的顆粒污染。

鋰離子電池中不同類型的顆粒,其尺寸從微米到毫米不等,可能通過短路、過熱和熱失控等方式對電池的性能、壽命、可靠性和安全性產(chǎn)生負面影響(參見圖2)[1]


【顯微課堂】生產(chǎn)過程中電池顆粒檢測


圖2:用于電池生產(chǎn)過程中技術清潔度的活性顆粒捕集器示例,以及捕集器表面檢測到的顆粒圖像。

目前,電池生產(chǎn)過程中有效顆粒檢測和分析的主要挑戰(zhàn)在于以實用、高效的方式識別和計算通過捕集器或印模獲取的顆粒。分析應在生產(chǎn)線中進行、在生產(chǎn)線附近進行,或至少非常接近生產(chǎn)線。有時作為單獨的QC驗證步驟,直接在電極材料上檢測顆粒,以驗證對比測量并檢查總體顆粒負荷,但這種測量對電ji具有破壞性。


為什么電池顆粒檢測很重要?

在電池生產(chǎn)過程中消除或zui小化顆粒,可以提高鋰離子電池的性能和可靠性。顆??赡軗p壞電池單體結(jié)構(gòu)、電極和隔膜,從而導致短路(金屬和導電顆粒)、過熱和熱失控 [1]。有時,即使電極材料上只有少量顆粒,由于鋰枝晶生長或快速充電造成的機械應力,也可能導致電池出現(xiàn)問題或故障 [2-4]。


因此,在電池的制造和組裝過程中,顆粒和缺陷檢測至關重要。有效的檢測和分析對于識別有害顆粒和缺陷,確保生產(chǎn)過程中可靠的質(zhì)量控制至關重要 [4-6]。隨著電池需求的增長,導致大規(guī)模生產(chǎn)不斷增加,需要更加迫切地采用高效、可靠的顆粒污染檢測方法,以消除或至少zui小化污染。


顆粒檢測與分析方法

可以采用多種方法進行顆粒檢測和分析,例如光學顯微鏡、電子顯微鏡和光譜學。特別地,光學顯微鏡是一種快速且通用的技術,在顆粒檢測方面具有許多優(yōu)勢。它提供了顆粒的定性和定量信息。通過使用各種照明和對比度方法,可以快速識別、計數(shù)、測量和根據(jù)顆粒的大小和反射率(通常是金屬與非金屬)對顆粒進行分類,以幫助確定其潛在的損害性 [6,7]。然而,顆粒成分分析只能通過激光光譜學等先進技術來確定 [5-7]。


在電池生產(chǎn)過程中,為了對顆粒進行視覺和成分表征,經(jīng)常采用掃描電子顯微鏡(SEM)和能量色散X射線光譜(EDS)[5,6]。雖然SEM和EDS具有更高的分辨率,可以準確測量顆粒的橫向尺寸,并進行化學分析和定量組成信息,但這些方法昂貴且耗時。


有一種強大的替代技術:一種將光學顯微鏡和激光誘導擊穿光譜(LIBS)相結(jié)合的“二合一"解決方案。這種解決方案可以更容易地用于電池生產(chǎn)線上的顆粒檢測和分析,從而實現(xiàn)快速、可靠且經(jīng)濟高效的質(zhì)量控制。


僅使用光學顯微鏡,視覺分析可以快速提供關于顆粒的寬度、長度、高度(XYZ)和反射率的數(shù)據(jù)(參見圖3) [5,6]。然而,當將其與LIBS結(jié)合使用時,化學分析可以迅速獲得顆粒的定性組成數(shù)據(jù) [5,6]。為了更好地了解顆粒對電池系統(tǒng)造成損害的可能性(通常稱為顆粒損害潛力),了解顆粒的大小和組成都非常重要。當確定顆粒的特性(即尺寸、導電性、硬度和化學反應性)以及污染源時,尺寸和組成數(shù)據(jù)可以提供極大的幫助。


【顯微課堂】生產(chǎn)過程中電池顆粒檢測

圖3:已使用徠卡清潔度分析解決方案分析過的檢測顆粒,以確定其尺寸。


將電池性能zui大限度的提升,將徠卡解決方案的故障風險降至zui低。


為了在不使用電子顯微鏡的情況下實現(xiàn)快速、可靠且具有高經(jīng)濟性電池顆粒檢測和分析,用戶可以利用徠卡清潔度分析解決方案 [5,6]


如果需要快速可靠地計數(shù)顆粒、測量其XYZ尺寸,并根據(jù)反射率對它們進行分類,那么配備有數(shù)碼相機和清潔度分析軟件的徠卡復合顯微鏡是一個很好的選擇。


然而,如果用戶需要上述相同的表征,但還需要高效地確定顆粒的組成,那么徠卡結(jié)合LIBS和清潔度分析軟件的“二合一"解決方案是更合適的選擇(參考圖4)。



【顯微課堂】生產(chǎn)過程中電池顆粒檢測

圖4:可用于電池顆粒檢測和分析的徠卡清潔度分析解決方案示例。





總結(jié)與結(jié)論






生產(chǎn)過程中顆粒的污染給電池制造商帶來了諸多挑戰(zhàn)。不同大小和組成的顆粒會沉積在電池內(nèi)部,導致短路、過熱、性能下降和電池壽命縮短。在電池生產(chǎn)過程中,快速準確地識別可能造成損害的顆粒對于實現(xiàn)快速可靠的質(zhì)量控制至關重。利用光學顯微鏡的清潔度分析解決方案可用于高效且具有成本效益的電池顆粒檢測和分析。為了更好地了解顆粒可能造成損害的潛力,結(jié)合光學顯微鏡與LIBS的“二合一"解決方案,對顆粒進行同時的視覺和化學評估,將是一個優(yōu)勢。


參考文獻:(上下滑動查看更多)

1.J. Grabow, J. Klink, R. Benger, I. Hauer, H.-P. Beck, Particle Contamination in Commercial Lithium-Ion Cells - Risk Assessment with Focus on Internal Short Circuits and Replication by Currently Discussed Trigger Methods, Batteries (2023) vol. 9, iss. 1, art. 9, DOI: 10.3390/batteries9010009.

2.G. McConohy, X. Xu, T. Cui, E. Barks, S. Wang, E. Kaeli, C. Melamed, X.W. Gu, W.C. Chueh, Mechanical regulation of lithium intrusion probability in garnet solid electrolytes, Nature Energy (2023) vol. 8, pp. 241–250, DOI: 10.1038/s41560-022-01186-4.

3.S. Wang, K. Rafiz, J. Liu, Y. Jinc, J.Y.S. Lin, Effects of lithium dendrites on thermal runaway and gassing of LiFePO4 batteries, Sustainable Energy & Fuels (2020) vol. 4, iss. 5, pp. 2342-2351, DOI: 10.1039/D0SE00027B.

4.T. Pfeifer, A. Borchers, How to Prepare and Analyse Battery Samples with Electron Microscopy: Revealing the invisible - webinar on-demand, Science Lab (2023) Leica Microsystems.

5..K. Scheffler, K. Kartaschew, J. DeRose, Quality Control Under the Microscope: Why battery manufacturers need to embrace laser induced breakdown spectroscopy (LIBS), Science Lab (2022) Leica Microsystems.

6..J. DeRose, K. Scheffler, D.R. Barbero, Key Factors for Efficient Cleanliness Analysis, Science Lab (2020) Leica Microsystems.

7.J. DeRose, D. Barbero, K. Scheffler, 3 Factors Determine the Damage Potential of Particles: For cleanliness analysis, the potential of a particle to cause damage is best assessed by measuring its reflectivity, height, and composition, Science Lab (2022) Leica Microsystems.


相關產(chǎn)品


【顯微課堂】生產(chǎn)過程中電池顆粒檢測

徠卡DM6 M LIBS


會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復您~
在線留言
西林县| 温宿县| 府谷县| 谢通门县| 泸溪县| 江源县| 渝北区| 丹东市| 五指山市| 文化| 介休市| 休宁县| 潮安县| 班戈县| 泽州县| 南安市| 明水县| 朔州市| 丰台区| 麻阳| 巴楚县| 名山县| 安仁县| 南平市| 清苑县| 邵武市| 游戏| 易门县| 湛江市| 安图县| 江口县| 德清县| 邮箱| 南京市| 夹江县| 江城| 常宁市| 琼结县| 格尔木市| 凌源市| 明溪县|