當(dāng)前位置:岱美儀器技術(shù)服務(wù)(上海)有限公司>>技術(shù)文章>>晶圓鍵合技術(shù)在LED應(yīng)用中的研究進(jìn)展(二)
晶圓鍵合技術(shù)在LED應(yīng)用中的研究進(jìn)展(二)
1.2 金屬鍵合
對(duì)于高亮度垂直LED(high-brightness vertical LED,HB-VLED)來(lái)說(shuō),鍵合界面必須具有高熱導(dǎo)和高電導(dǎo)的性能,幸運(yùn)的是大部分金屬材料導(dǎo)熱性能好的同時(shí)導(dǎo)電性能也較好,使金屬鍵合技術(shù)成為目前LED產(chǎn)業(yè)中最常使用的鍵合技術(shù),即以金屬膜為中間層實(shí)現(xiàn)晶圓對(duì)的連接。金屬鍵合技術(shù)提供了高熱導(dǎo)、低電阻、電流分布均勻及光吸收少的鍵合界面,無(wú)論是對(duì)于AlInGaP紅光LED還是對(duì)于InGaN藍(lán)光LED,采用金屬鍵合技術(shù)都能有效提高其熱學(xué)、電學(xué)和光學(xué)性能,因此金屬鍵合技術(shù)受到了研究者們的廣泛關(guān)注。
金屬晶圓鍵合法的一般工藝步驟與黏合劑鍵合法大同小異,不過(guò)將黏合劑中間層的旋涂替換為金屬中間層的蒸鍍(或?yàn)R射),工藝中要保證金屬的均勻性。在基于金屬鍵合法的HB-VLED制備技術(shù)中,金屬中間層實(shí)際上是一種“多功能層",它應(yīng)該包括接觸層、反射層、阻擋層和鍵合層。接觸層用來(lái)提高金屬與外延層的黏附力并形成低比接觸電阻率的歐姆接觸,該層金屬一般很薄,可以避免吸收過(guò)多光線。反射層金屬能提高LED的光提取效率,常用的有對(duì)可見光反射率高的金屬如Ag,Al,Au,Cu及這些金屬的多層組合。阻擋層用來(lái)防止鍵合金屬原子向反射層和器件有源層擴(kuò)散,避免反射層和有源層質(zhì)量下降造成器件出光效率的降低,常用的擴(kuò)散阻擋層有Pt,Ti及Cu等。鍵合層則是由適當(dāng)?shù)慕饘袤w系在鍵合交界面發(fā)生原子互相擴(kuò)散形成的致密連接層,金屬晶圓鍵合技術(shù)通常有兩種基本方法:共晶鍵合和熱壓鍵合。
1.2.1 共晶鍵合
共晶鍵合是有液態(tài)金屬參與鍵合的通用術(shù)語(yǔ),其金屬體系很多,這些金屬可以是一種純金屬,也可以是兩元或三元合金。一定組分的鍵合金屬在鍵合溫度下,某種金屬會(huì)轉(zhuǎn)變成液態(tài)并在鍵合界面發(fā)生固-液擴(kuò)散,進(jìn)而形成一種或多種金屬間化合物。在HB-VLED的制備工藝中,通常使用高溫(400℃以上)退火的方法來(lái)加固電極,因此選擇的共晶鍵合金屬體系應(yīng)該能夠生成耐高溫的中間產(chǎn)物。W.S.Wong等人使用Pb-In鍵合法,在200℃下將GaN外延片鍵合至Si襯底,鍵合層生成金屬間化合物PbIn3,熔點(diǎn)為664℃。Y.J.Chen等人使用Cu-Sn-Ag體系完成垂直型GaN基LED的制備,150℃下鍵合30和60min的鍵合層如圖4所示。鍵合30min后鍵合層仍能發(fā)現(xiàn)Sn,而60min后鍵合層全部轉(zhuǎn)化為Cu6Sn5和Ag3Sn。最近,B.Zou等人使用Cu-Sn金屬體系為鍵合層,體系還有Au-Sn,Au-In及Ag-In等。值得一提的是,E.Choi等人采用射頻加熱的方法代替?zhèn)鹘y(tǒng)的熱阻加熱法,縮短了Au-Sn鍵合時(shí)間,提高了鍵合效率。
(a)30min (b)60min
圖4 150℃下30min和60min Cu-Sn-Ag鍵合界面的SEM橫截面圖
1.2.2 熱壓鍵合
熱壓鍵合與共晶鍵合的區(qū)別在于鍵合過(guò)程中沒(méi)有液態(tài)金屬的參與,即在鍵合界面發(fā)生固態(tài)擴(kuò)散,是一種沒(méi)有中間產(chǎn)物的金屬鍵合。在熱壓鍵合工藝中,兩晶圓表面金屬分子的擴(kuò)散速率與金屬種類、溫度、壓力和表面粗糙度的關(guān)系緊密,加熱和加壓都有助于提升擴(kuò)散速率,越平坦的表面之間貼合越緊密,也有助于提高擴(kuò)散速率,作用均勻的壓力能提高鍵合良率。幾乎所有的金屬都是可以通過(guò)熱壓方式鍵合到一起的,然而所需要的溫度和壓力卻不都在實(shí)際生產(chǎn)應(yīng)用的范圍之內(nèi)。LED產(chǎn)業(yè)中常用的金屬熱壓鍵合方法有Au-Au,Cu-Cu,Ag-Au和Al-Al鍵合,工藝溫度一般在100~200℃,與HB-VLED制備工藝有很好的兼容性。Au是常用的理想鍵合金屬,Au-Au鍵合的抗氧化能力和抗沾污能力十分突出。H.Kurotaki等人對(duì)Au-Au熱壓鍵合的研究表明,在100℃的低溫條件下就能得到無(wú)空洞的約20MPa的Au-Au鍵合強(qiáng)度。C.L.Chang等人使用Ag-Au熱壓鍵合法在150℃低溫條件下得到熔點(diǎn)超過(guò)950℃的鍵合界面。表1是部分共晶鍵合和熱壓鍵合的主要工藝特性對(duì)比。
生產(chǎn)應(yīng)用當(dāng)中應(yīng)根據(jù)器件的生長(zhǎng)襯底和鍵合目標(biāo)襯底的性質(zhì)(熱膨脹系數(shù)差異及表面特性等)選擇合適的金屬鍵合方法,如共晶鍵合中由于有液相金屬的參與,使得工藝對(duì)晶圓表面平坦度的要求較低,適合InGaN基LED的制備;而對(duì)于AlInGaPLED,因AlInGaP與GaAs生長(zhǎng)襯底之間的晶格失配很小,外延薄膜表面較平坦,則Au-Au鍵合技術(shù)使用十分頻繁。
然而,金屬鍵合存在引入應(yīng)力較大的問(wèn)題,使晶片易在鍵合過(guò)程中受損,同時(shí)會(huì)為后續(xù)剝離工藝帶來(lái)負(fù)面影響。而且,為了保證鍵合質(zhì)量,通常使用的鍵合層較厚,增加了金屬鍵合的應(yīng)用成本。因此,還需尋找有 效的輔助鍵合方法和新的金屬體系,來(lái)減少應(yīng)力并降低應(yīng)用成本。
表1 共晶鍵合和熱壓鍵合主要工藝特性對(duì)比
1.3 直接鍵合
直接鍵合是在待鍵合表面之間形成強(qiáng)化學(xué)鍵的鍵合技術(shù),廣 泛應(yīng)用于創(chuàng)新性結(jié)構(gòu)工程。優(yōu)點(diǎn)在于無(wú)需加入中間介質(zhì)層,且通過(guò)對(duì)待鍵合表面的活化處理,能顯著降低鍵合溫度,減少不同材料熱失配帶來(lái)的影響。表2給出的是在半導(dǎo)體器件制造中的典型直接鍵合技術(shù)的實(shí)例。因在HB-VLED制備當(dāng)中常常在GaN外延層上積淀金屬反射層來(lái)提高光效,所以在LED領(lǐng)域人們更關(guān)注金屬與襯底材料的直接鍵合。
表2 半導(dǎo)體器件制造中的典型直接鍵合技術(shù)
其中陽(yáng)極鍵合用于堿玻璃與其他材料的鍵合,本文不多作介紹。對(duì)于化合物半導(dǎo)體的熔融鍵合在20世紀(jì)90年代便得到了應(yīng)用,包括使用對(duì)發(fā)射波長(zhǎng)透明的襯底替換Si襯底來(lái)提高光效的AlGaInP/GaPLED。熔融鍵合的工藝過(guò)程:首先對(duì)待鍵合表面作親水處理,引入大量親水基團(tuán)(-OH),然后在空氣中兩晶圓能依靠表面自由羥基及水分子間的氫鍵作用而完成預(yù)鍵合,然而這個(gè)鍵合強(qiáng)度在沒(méi)有后續(xù)處理的情況下是不夠的。因此,早期的熔融鍵合都需要通過(guò)高溫?zé)崽幚韥?lái)形成高強(qiáng)度的化學(xué)鍵,W.L.Goh等人在800℃以上的溫度條件下完成Ti-Si體系的熔融晶圓鍵合;后來(lái)由J.Yu等人改進(jìn)鍵合技術(shù),在真空環(huán)境下完成了基于固態(tài)非晶化的Ti-Si鍵合,將鍵合溫度降低到了400℃,鍵合時(shí)間為2h。
等離子體活化鍵合的研究發(fā)展是為了降低后續(xù)退火溫度,研究發(fā)現(xiàn)通過(guò)O,N或Ar等離子體輻射晶圓表面,結(jié)合濕法化學(xué)處理能有 效地將退火溫度降低至150~400℃而得到高強(qiáng)度的鍵合,一種解釋是等離子體活化提高了晶圓表面的親水性,使晶圓最初互相接觸時(shí)的鍵能比未經(jīng)等離子體活化時(shí)大2~3倍。許維等人使用Ar等離子體分別對(duì)Si晶圓和積淀有Ni的Si晶圓表面進(jìn)行活化,隨后在溫度400℃、壓強(qiáng)0.5MPa的條件下進(jìn)行2英寸(1英寸=2.54cm)晶圓的Ni-Si鍵合,反應(yīng)生成NixSiy化合物。鍵合界面空洞的數(shù)量隨Ar氣體流量的增大而減少,表明Ar等離子體的活化有助于提高Ni-Si鍵合的質(zhì)量,但鍵合空洞并不能WAN QUAN消除,這是由于退火過(guò)程極易形成鍵合空洞,因此,研究低溫下的鍵合技術(shù)是極其必要的。
表面活化鍵合是一種全程在超真空條件下進(jìn)行的改進(jìn)技術(shù),也是ZUI有發(fā)展前景的鍵合技術(shù)。采用Ar離子束轟擊待鍵合表面,以去除惰性層如自然氧化層和有機(jī)物沾污,使晶圓表面活性增強(qiáng),甚至在室溫下也能自發(fā)地形成化學(xué)鍵。為提高鍵合良率,工藝當(dāng)中應(yīng)對(duì)晶圓進(jìn)行充分的預(yù)處理,同時(shí)避免來(lái)自環(huán)境或藥品的沾污。采用表面活化鍵合已經(jīng)成功實(shí)現(xiàn)金屬、Si以及III-V族半導(dǎo)體的鍵合,但該方法對(duì)晶圓表面的清潔度和粗糙度要求很高,使鍵合前的清洗工藝十分復(fù)雜,要達(dá)到大尺寸、無(wú)空洞的鍵合仍然十分困難。因此,工藝優(yōu)化及降低鍵合溫度將是今后研究工作的重點(diǎn)。
2 結(jié)語(yǔ)
新型垂直結(jié)構(gòu)LED以其*的性能突破傳統(tǒng)結(jié)構(gòu)LED的發(fā)展瓶頸,滿足光電器件大功率化的需求。晶圓鍵合技術(shù)作為HB-VLED器件制備工序的第一步,直接影響產(chǎn)品的性能和良率。黏合劑鍵合法工藝簡(jiǎn)便、生產(chǎn)成本低,適合大規(guī)模生產(chǎn)應(yīng)用,且黏合劑材料模量小,可在柔性襯底LED中發(fā)揮很好作用,但其鍵合可靠性還有待提高。金屬鍵合法能提供高熱導(dǎo)、高電導(dǎo)和高強(qiáng)度的鍵合界面,與HB-VLED制備工序兼容性好,但鍵合過(guò)程引入的應(yīng)力較大,易造成晶圓損壞。因此,還需研發(fā)室溫下的晶圓鍵合技術(shù)來(lái)減少晶圓損傷,同時(shí)通過(guò)省去加熱和冷卻的時(shí)間來(lái)提高產(chǎn)能,而直接鍵合技術(shù)中的表面活化鍵合技術(shù)有望實(shí)現(xiàn)室溫鍵合,但仍難以得到大尺寸的無(wú)空洞鍵合。相信通過(guò)科研人員的努力,表面活化鍵合技術(shù)會(huì)在新型LED工業(yè)生產(chǎn)中大展身手。