Leica TCS SP8 STED 3X超高分辨率激光共聚焦顯微鏡
- 公司名稱 廣州市炳陽生物科技有限公司
- 品牌
- 型號
- 產地 外國
- 廠商性質 代理商
- 更新時間 2017/4/7 17:06:16
- 訪問次數 2827
聯系我們時請說明是化工儀器網上看到的信息,謝謝!
Leica TCS SP8 STED 3X超高分辨率激光共聚焦顯微鏡
儀器簡介:
STED 3X 顯微技術*集成在TCS SP8平臺中。使用TCS SP8 STED 3X,可以獲得共聚焦的精髓。的光學元件與配備有 HyD™的多光譜檢測系統(tǒng)以及徠卡白激光相結合,不但可以增強靈敏度和對比度,還可同時降低激光照射功率。因此,即使是染色不佳的樣品,也可以得到真實的超高分辨率光學切片圖像。共振掃描技術輔以門控STED,幫助您獲得*的超高分辨率活細胞圖像。12kHZ 高速掃描鏡能夠在zui快的速度下,以512×16格式記錄多達420fps超高分辨率圖像。同時也可以利用STED-FCS(STED-熒光相關光譜)進行單分子檢測(SMD)。徠卡創(chuàng)新技術相輔相成,受益無限。
三維的STED-所有維度的超高分辨率,依靠TCS SP8 STED 3X,您可以根據您的需要自由設計PSF,從而選擇XY和Z方向上的*分辨率。
多色成像-在整個光譜范圍上的超高分辨率 TCS SP8 STED 3X可提供多條STED激光線。更多的熒光染料可以被用于STED成像。
活細胞成像-高速超高分辨率成像,門控STED提高了染料的光穩(wěn)定性,并且提高了系統(tǒng)的活細胞性能。
應用范圍:
主要用于組織切片、活細胞的熒光標記、三維圖像重建分析研究;細胞生物物質、離子的定性、定量、定時和定位分布檢測等,可以在同一張樣品上同時進行多重熒光標記觀察。對活細胞或組織切片進行連續(xù)掃描,可獲得精細的細胞骨架、染色體、細胞器和細胞膜系統(tǒng)的三維圖像。與普通熒光顯微鏡相比,具有更高對比度、解析度和高靈敏度。
技術規(guī)格:
- 在x、y和z中靈活可調的直接超分辨率,展示了zui精細的細節(jié)信息。
- 多條STED光線實現了可見光的全光譜超高分辨率成像。
- 門控檢測提高了分辨率以及活細胞性能。
- STED白色物鏡為全光譜范圍提供*色差校正。
- 自動光束校準保證系統(tǒng)的穩(wěn)定性和結果的可靠性。
- 基于TCS SP8的模塊化設計可隨時升級。
- 智能STED向導可直觀地控制實驗。
- 惠更斯反卷積可以從原始數據中獲取更多信息。
STED Key Publications
First publication on STED technology:
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics letters 19, 780-782, (1994).http://www.ncbi.nlm.nih.gov/pubmed/19844443
First biological image:
Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences of the United States of America 97, 8206-8210, (2000). http://www.ncbi.nlm.nih.gov/pubmed/10899992
STED with genetically encoded marker: GFP
Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. Nature methods 3, 721-723, (2006).http://www.ncbi.nlm.nih.gov/pubmed/16896340
STED with continuous wave laser beams:
Willig, K. I., Harke, B., Medda, R. & Hell, S. W. STED microscopy with continuous wave beams. Nature methods 4, 915-918, (2007). http://www.ncbi.nlm.nih.gov/pubmed/17952088
Two-color STED with two STED lines
Donnert, G. et al. Two-color far-field fluorescence nanoscopy. Biophysical journal 92, L67-69, (2007).http://www.ncbi.nlm.nih.gov/pubmed/17307826
Iso-STED and two-color STED with one STED line
Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells. Nature methods 5, 539-544, (2008).http://www.ncbi.nlm.nih.gov/pubmed/18488034
STED-FCS application
Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159-1162, (2009). http://www.ncbi.nlm.nih.gov/pubmed/19098897
Gated STED
Vicidomini, G. et al. Sharper low-power STED nanoscopy by time gating. Nature methods 8, 571-573, (2011).http://www.ncbi.nlm.nih.gov/pubmed/21642963
Selected Publications with Leica STED instrument
2016
Qiu, Z. et al. Translation Microscopy (TRAM) for super-resolution imaging. Scientific reports 6, 19993, (2016).http://www.ncbi.nlm.nih.gov/pubmed/26822455
Ruge, C. A. et al. Disintegration of nano-embedded microparticles after deposition on mucus: A mechanistic study. Colloids and surfaces. B, Biointerfaces 139, 219-227, (2016). http://www.ncbi.nlm.nih.gov/pubmed/26720142
Scheuring, D. et al. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proceedings of the National Academy of Sciences of the United States of America 113, 452-457, (2016).http://www.ncbi.nlm.nih.gov/pubmed/26715743
Torreno-Pina, J. A. et al. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America 113, E772-781, (2016). http://www.ncbi.nlm.nih.gov/pubmed/26798067